matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraAutomorphismus und GF(2)Körper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - Automorphismus und GF(2)Körper
Automorphismus und GF(2)Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Automorphismus und GF(2)Körper: Verständnishilfe
Status: (Frage) beantwortet Status 
Datum: 09:23 Do 31.08.2006
Autor: steffi_sun

Aufgabe
Frage zu Begriffen  

Kann mir jemand die Begriffe GF(2) - Körper genauer erklären, unser Prof konnte das nicht genau vermitteln, er meinte nur dass das die null und die eins drin wären und das ein Körper wäre.
Und was genau ist ein Automorphismus und für was braucht man den?

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.emath.de/Mathe-Board/

        
Bezug
Automorphismus und GF(2)Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Do 31.08.2006
Autor: mathmetzsch

Hallo,

GF steht für Galois Feld und das ist widerum ein endlicher Körper mit Primzahlcharakteristik. GF(2) enthält genau 2 Elemente, nämlich 0 und 1. GF(2) ist isomorph zum Restklassenkörper [mm] \IF_{2}. [/mm] Das heißt also man rechnet in den ganzen Zahlen mit mod(2), also (1+1=0). Jetzt müssen hier alle Körperaxiome gelten. Am interessantesten ist die Abgeschlossenheit bzgl. Multiplikation und Addition. Dazu stellt man sog. Additions- und Multiplikationstabellen auf:

0+0=0, 0+1=1, 1+0=1 und 1+1=0
0*0=0, 0*1=0, 1*0=0 und 1*1=1

Die anderen Axiome können auch nachgewiesen werden. Erklären kannst du dir das mit der 0 und der 1 auch so: Jedes Element eines Galois Felds GF(n) läßt sich als Nullstelle der Gleichung [mm] x^{n}-x=0 [/mm] darstellen, d.h. jedes Element ist eine Potenz einer primitiven (n-1)-ten Einheitswurzel. Dies ist eben bei n=2 nur für 0,1 erfüllt.

Achtung: Man kann auch endliche Körper [mm] \IF_{n} [/mm] mit [mm] n\in\IN [/mm] definieren, spricht dann aber nicht mehr vom Galois Feld.

Ich hoffe, das war einigenmaßen verständlich, ansonsten frage noch mal nach.

Ein Automorphismus ist ein bijektiver Homomorphismus von einer Gruppe G auf sich. Homorphismus: Seien [mm] (G,\circ),(H,*) [/mm] Gruppen, dann heißt eine Abbildung [mm]f:G\to H[/mm] Gruppenhomorphismus, wenn f relationstreu ist, d.h. [mm]f(a\circ b)=f(a)*f(b)[/mm]. Dann lässt sich daraus die Automorphismengruppe [mm] Aut(G):=\{f|f:G\to G\} [/mm] definieren. Es gibt auch noch innere Automorphismen, die sogar einen Normalteiler von Aut(G) bilden. Die Definition musst du aber []nachlesen. Weitere Anwendung finden die Automorphismen beim Homomorphiesatz. Du kannst damit zwar keine Häuser bauen, aber den Begriff sollte man sich schon einprägen, im Hinblick auf die Klausur sowieso ;-) !
Beispiele gibt's []hier!

Viele Grüße
Daniel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]