matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperAutomorphismengruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Automorphismengruppe
Automorphismengruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Automorphismengruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 So 02.01.2011
Autor: mathequestion2

Sorry für die vielen Fragen. Ich hatte gehofft es selber lösen zu können.
Aufgabe
Bestimmen Sie hier die Gruppe [mm]Aut(K/k)[/mm].
a) Für [mm]k = \IQ[/mm] und K der Zerfällungskörper von [mm]X^4 +X^3 +X^2 +X +1 \in \IQ[X][/mm].
b) Für [mm]k = \IF_2[/mm] und K der Zerfällungskörper von [mm]X^3 - X^2 + 1 \in \IF_2[X][/mm].


für die a) gibt es 4 Nullstellen. Kann ich die Aufgabe lösen, ohne explizit die Nullstellen zu berechen. Ich glaube, dass das auch der Sinn ist. Von den früheren Threads hier hatte ich gelesen, dass Identität und [mm]\sigma(i)=-i[/mm] zwei Automorphismen sind. Wie geht man da vor?

für die b)
Selbst wenn ich die Nullstellen explizit mit dem Computer ausrechne, sehe ich keine Automorphismen. hat jemand einen Tipp für mich?


        
Bezug
Automorphismengruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 So 02.01.2011
Autor: felixf

Moin!

> Sorry für die vielen Fragen. Ich hatte gehofft es selber
> lösen zu können.
> Bestimmen Sie hier die Gruppe [mm]Aut(K/k)[/mm].
>  a) Für [mm]k = \IQ[/mm] und K der Zerfällungskörper von [mm]X^4 +X^3 +X^2 +X +1 \in \IQ[X][/mm].
>  
> b) Für [mm]k = \IF_2[/mm] und K der Zerfällungskörper von [mm]X^3 - X^2 + 1 \in \IF_2[X][/mm].
>  
> für die a) gibt es 4 Nullstellen. Kann ich die Aufgabe
> lösen, ohne explizit die Nullstellen zu berechen.

Ja. Beachte, dass die Nullstellen primitive fuenfte Einheitswurzeln sind. (Das Polynom ist gleich [mm] $\frac{X^5 - 1}{X - 1}$.) [/mm]

> Ich
> glaube, dass das auch der Sinn ist. Von den früheren
> Threads hier hatte ich gelesen, dass Identität und
> [mm]\sigma(i)=-i[/mm] zwei Automorphismen sind. Wie geht man da
> vor?

Wieso sollte das Element $i$ im Koerper liegen?

> für die b)
> Selbst wenn ich die Nullstellen explizit mit dem Computer
> ausrechne, sehe ich keine Automorphismen. hat jemand einen
> Tipp für mich?

Es ist eine Erweiterung von endlichen Koerpern. Da kann man die Galoisgruppe explizit angeben und sofort sagen, wie die Struktur aussieht, sobald du den Koerpererweiterungsgrad kennst. Tipp: kennst du den Frobenius-Automorphismus?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]