Automorphismengruppe < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:34 Fr 27.10.2006 | Autor: | Hanna80 |
Aufgabe | Es sei K4 = [mm] \{ \pmat{ 1&2&3&4 \\ 1&2&3&4 } , \pmat{ 1&2&3&4 \\ 3&4&1&2 } , \pmat{ 1&2&3&4 \\ 2&1&4&3 } , \pmat{ 1&2&3&4 \\ 4&3&2&1 } \}
[/mm]
Bestimmen Sie die Automorphismengruppe G von K4!
(Hinweis : Konstruieren Sie h, g [mm] \in\ [/mm] G mit h² = g³ = id, fassen Sie f [mm] \in\ [/mm] G als Permutation der Menge K4 auf, um |G| zu ermitteln.) |
Ich verstehe mal wieder den Hinweis nicht.
Ich habe jetzt versucht alle bijektiven Homomorphismen von K4 nach K4 zu finden.
f1(x) = [mm] \pmat{ 1&2&3&4 \\ 3&4&1&2 } [/mm] * x
f2(x) = [mm] \pmat{ 1&2&3&4 \\ 2&1&4&3 } [/mm] * x
f3(x) = [mm] \pmat{ 1&2&3&4 \\ 4&3&2&1 } [/mm] * x
f4(x) = [mm] \pmat{ 1&2&3&4 \\ 3&4&1&2 } [/mm] * [mm] \pmat{ 1&2&3&4 \\ 3&4&1&2 } [/mm] * x = id
1. Frage: meine Gruppe K4 ist kommutativ.
gehört f(x) = x * [mm] \pmat{ 1&2&3&4 \\ 3&4&1&2 } [/mm] trotzdem zur Autom.-gruppe?
2. Frage: Meine Elemente in K4 sind zu sich selbst invers. d.h. f1 [mm] \circ [/mm] f1 = id. Ich brauche ja nur ein neutrales, f2 [mm] \circ [/mm] f2 muss ich nicht mehr mit dazu packen, oder?
3. Frage: f1 [mm] \circ [/mm] f2 = f3. , f1 [mm] \circ [/mm] f3 = f2 usw. also brauche ich auch keine Verknüpfungen mehr aufführen, oder? Genau wie Konjugationen, die bringen mir ja nichts neues.
Abschlussfrage: mit meinen 4 Bijektionen sind meine Gruppenaxiome erfüllt. Und mehr fallen mir nicht ein. Habe ich die Aufgabe gelöst? Ich finde der Hinweis sagt nein, weil mit h³ drehe ich mich einfach nur im Kreis.
Ich würde mich über eine Antwort sehr freuen.
Schöne Grüße
Hanna
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:27 Fr 27.10.2006 | Autor: | statler |
Guten Tag Hanna!
> Es sei K4 = [mm]\{ \pmat{ 1&2&3&4 \\ 1&2&3&4 } , \pmat{ 1&2&3&4 \\ 3&4&1&2 } , \pmat{ 1&2&3&4 \\ 2&1&4&3 } , \pmat{ 1&2&3&4 \\ 4&3&2&1 } \}[/mm]
>
> Bestimmen Sie die Automorphismengruppe G von K4!
>
> (Hinweis : Konstruieren Sie h, g [mm]\in\[/mm] G mit h² = g³ = id,
> fassen Sie f [mm]\in\[/mm] G als Permutation der Menge K4 auf, um
> |G| zu ermitteln.)
> Ich verstehe mal wieder den Hinweis nicht.
> Ich habe jetzt versucht alle bijektiven Homomorphismen von
> K4 nach K4 zu finden.
> f1(x) = [mm]\pmat{ 1&2&3&4 \\ 3&4&1&2 }[/mm] * x
> f2(x) = [mm]\pmat{ 1&2&3&4 \\ 2&1&4&3 }[/mm] * x
> f3(x) = [mm]\pmat{ 1&2&3&4 \\ 4&3&2&1 }[/mm] * x
> f4(x) = [mm]\pmat{ 1&2&3&4 \\ 3&4&1&2 }[/mm] * [mm]\pmat{ 1&2&3&4 \\ 3&4&1&2 }[/mm]
> * x = id
Und ich verstehe deine Schreibweise nicht.
Man kann das auch ohne den Hinweis anpacken. Ein Automorphismus muß 1. bijektiv sein und 2. das neutrale Element auf sich abbilden. Damit kann man schon mal abschätzen, wie viele Autom. es höchstens gibt.
Dann kann man sich diese Abbildungen hinschreiben (weil es nicht viele sind) und prüfen, welche von ihnen Autom. sind. Man wird feststellen: alle!
Wenn du dem Hinweis vertraust, muß es einen Automorphismus der Ordnung 3 geben. Aber dann kann |G| nicht 4 sein (wg. des Satzes von Lagrange).
> 1. Frage: meine Gruppe K4 ist kommutativ.
> gehört f(x) = x * [mm]\pmat{ 1&2&3&4 \\ 3&4&1&2 }[/mm] trotzdem zur
> Autom.-gruppe?
Die Frage verstehe ich nicht.
> 2. Frage: Meine Elemente in K4 sind zu sich selbst invers.
> d.h. f1 [mm]\circ[/mm] f1 = id. Ich brauche ja nur ein neutrales, f2
> [mm]\circ[/mm] f2 muss ich nicht mehr mit dazu packen, oder?
>
> 3. Frage: f1 [mm]\circ[/mm] f2 = f3. , f1 [mm]\circ[/mm] f3 = f2 usw. also
> brauche ich auch keine Verknüpfungen mehr aufführen, oder?
> Genau wie Konjugationen, die bringen mir ja nichts neues.
>
> Abschlussfrage: mit meinen 4 Bijektionen sind meine
> Gruppenaxiome erfüllt. Und mehr fallen mir nicht ein. Habe
> ich die Aufgabe gelöst? Ich finde der Hinweis sagt nein,
> weil mit h³ drehe ich mich einfach nur im Kreis.
Ohne deine Schreibweise zu verstehen, kann ich dir sagen, daß deine 4 Bijektionen nicht die Gruppenaxiome erfüllen können, weil sie nämlich keine Untergruppe von G bilden können.
> Ich würde mich über eine Antwort sehr freuen.
Das ist schön, auch wenn meine Antwort vielleicht enttäuschend ist.
Gruß aus HH-Harburg
Dieter
|
|
|
|