matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperAutomorphismen / Konjugierte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Automorphismen / Konjugierte
Automorphismen / Konjugierte < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Automorphismen / Konjugierte: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 16:19 Mo 17.06.2013
Autor: willikufalt

Hier geht es um keine Aufgabe, sondern um ein Verständnisproblem.

Folgender Sachverhalt sollte gelten:

Sei K ein Körper, C sein algebraischer Abschluss. f sei das Mipo von [mm] K(\alpha) [/mm] und habe n verschiedene Nullstellen in C.

[mm] \beta [/mm] heißt konjugiert zu [mm] \alpha, [/mm] wenn es einen Automorphismus [mm] \sigma [/mm] von C/K gibt, mit [mm] \sigma(\alpha)=\beta. [/mm]

Das habe ich jetzt hoffentlich richtig aus dem Buch "Einführung in die Algebra" von Falko Lorenz wiedergegeben.


Jetzt soll weiter folgen:

Es gibt genau n verschiedene Homomorphismen von [mm] K(\alpha)/K [/mm] in C/K.

Beweis(laut obigem Buch): Ein Homomorphismus [mm] \tau: K(\alpha)/K \to [/mm] C/K ist durch Angabe von [mm] \tau(\alpha) [/mm] festgelegt.


Das ist mir nicht klar.
Ich weiß, dass eine Nullstelle des Mipos wieder auf eine andere Nullstelle abgebildet wird.

Wenn ich mir jetzt aber vorstelle, f habe 4 Nullstellen: [mm] \alpha, \beta, \gamma, \delta. [/mm]
Dann würde obige Aussage für mich bedeuten, dass es genau einen Homomorphismus gibt, der [mm] \alpha [/mm] auf [mm] \alpha [/mm] abbildet (die Identität). Ebenso einen, der [mm] \alpha [/mm] auf [mm] \beta [/mm] abbildet. Dasselbe für [mm] \alpha [/mm] auf [mm] \delta [/mm] und [mm] \alpha [/mm] auf [mm] \gamma. [/mm]

Meine eigentliche Frage ist:

Warum kann es nicht z.B. einen Homorphismus geben, der [mm] \alpha [/mm] auf [mm] \alpha [/mm] abbildet und [mm] \beta [/mm] auf [mm] \beta [/mm] und einen weiteren Homomorphismus, der [mm] \alpha [/mm] auf [mm] \alpha [/mm] abbildet und [mm] \beta [/mm] auf [mm] \delta? [/mm]




        
Bezug
Automorphismen / Konjugierte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Mo 17.06.2013
Autor: felixf

Moin!

> Hier geht es um keine Aufgabe, sondern um ein
> Verständnisproblem.
>  
> Folgender Sachverhalt sollte gelten:
>  
> Sei K ein Körper, C sein algebraischer Abschluss. f sei
> das Mipo von [mm]K(\alpha)[/mm] und habe n verschiedene Nullstellen
> in C.
>  
> [mm]\beta[/mm] heißt konjugiert zu [mm]\alpha,[/mm] wenn es einen
> Automorphismus [mm]\sigma[/mm] von C/K gibt, mit
> [mm]\sigma(\alpha)=\beta.[/mm]
>  
> Das habe ich jetzt hoffentlich richtig aus dem Buch
> "Einführung in die Algebra" von Falko Lorenz
> wiedergegeben.

Ja, hast du.

> Jetzt soll weiter folgen:
>  
> Es gibt genau n verschiedene Homomorphismen von [mm]K(\alpha)/K[/mm]
> in C/K.
>  
> Beweis(laut obigem Buch): Ein Homomorphismus [mm]\tau: K(\alpha)/K \to[/mm]
> C/K ist durch Angabe von [mm]\tau(\alpha)[/mm] festgelegt.

[ok]

> Das ist mir nicht klar.
>  Ich weiß, dass eine Nullstelle des Mipos wieder auf eine
> andere Nullstelle abgebildet wird.
>  
> Wenn ich mir jetzt aber vorstelle, f habe 4 Nullstellen:
> [mm]\alpha, \beta, \gamma, \delta.[/mm]
>  Dann würde obige Aussage
> für mich bedeuten, dass es genau einen Homomorphismus
> gibt, der [mm]\alpha[/mm] auf [mm]\alpha[/mm] abbildet (die Identität).

Genau. Das ist die Inklusionsabbildung [mm] $K(\alpha) \to [/mm] C$.

> Ebenso einen, der [mm]\alpha[/mm] auf [mm]\beta[/mm] abbildet. Dasselbe für
> [mm]\alpha[/mm] auf [mm]\delta[/mm] und [mm]\alpha[/mm] auf [mm]\gamma.[/mm]
>  
> Meine eigentliche Frage ist:
>  
> Warum kann es nicht z.B. einen Homorphismus geben, der
> [mm]\alpha[/mm] auf [mm]\alpha[/mm] abbildet und [mm]\beta[/mm] auf [mm]\beta[/mm] und einen
> weiteren Homomorphismus, der [mm]\alpha[/mm] auf [mm]\alpha[/mm] abbildet und
> [mm]\beta[/mm] auf [mm]\delta?[/mm]

Nun, wenn [mm] $\beta \in K(\alpha)$ [/mm] liegt, dann muss der eindeutig bestimmte Homomorphimus [mm] $K(\alpha) \to [/mm] C$ der [mm] $\alpha$ [/mm] auf [mm] $\alpha$ [/mm] abbildet (naemlich die Inklusionsabbildung) auch [mm] $\beta$ [/mm] auf [mm] $\beta$ [/mm] abbilden.

Wenn jedoch [mm] $\beta \not\in K(\alpha)$ [/mm] ist, dann bildet der Homomorphismus [mm] $\beta$ [/mm] erst gar nicht ab. Schliesslich ist er nur auf [mm] $K(\alpha)$ [/mm] definiert.


Du kannst jetzt jedoch Homomorphismen [mm] $K(\alpha, \beta, \gamma, \delta) \to [/mm] C$ betrachten (deren Bild ist immer gleich [mm] $K(\alpha, [/mm] beta, [mm] \gamma, \delta)$, [/mm] falls das Minimalpolynom genau diese vier Nullstellen hat). Hier kann es durchaus welche geben, die [mm] $\alpha$ [/mm] festhalten, [mm] $\beta$ [/mm] aber z.B. nicht.

Betrachte z.B. [mm] $\alpha [/mm] = [mm] \sqrt[4]{2}$ [/mm] und $f = [mm] X^4 [/mm] - 2$. Dann ist [mm] $\beta [/mm] = i [mm] \alpha$, $\gamma [/mm] = [mm] -\alpha$ [/mm] und [mm] $\delta [/mm] = -i [mm] \alpha$. [/mm] Die komplexe Konjugation (eingeschraenkt auf [mm] $\IQ(\alpha, \beta, \gamma, \delta)$) [/mm] gibt nun einen Homomorphismus, der [mm] $\alpha$ [/mm] und [mm] $\gamma$ [/mm] jeweils auf sich selber abbildet, jedoch [mm] $\beta$ [/mm] auf [mm] $\delta$ [/mm] und umgekehrt.

LG Felix


Bezug
                
Bezug
Automorphismen / Konjugierte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Mo 17.06.2013
Autor: willikufalt

> Nun, wenn $ [mm] \beta \in K(\alpha) [/mm] $ liegt, dann muss der eindeutig
> bestimmte Homomorphimus $ [mm] K(\alpha) \to [/mm] C $ der $ [mm] \alpha [/mm] $ auf $  
> [mm] \alpha [/mm] $ abbildet (naemlich die Inklusionsabbildung) auch $ [mm] \beta [/mm] $ auf
> $ [mm] \beta [/mm] $ abbilden.

Aus der Tatsache, dass [mm] \alpha [/mm] auf sich selbst abgebildet wird, kann ich folgern, dass alle Elemente aus [mm] K(\alpha) [/mm] auf sich selbst abgebildet werden. Also auch [mm] \beta, \gamma, \delta, [/mm] falls sie in [mm] K(\alpha) [/mm] liegen.

Wenn jetzt jedoch [mm] \alpha [/mm] auf [mm] \beta [/mm] abgebildet worauf kann dann z.B. [mm] \gamma [/mm] abgebildet werden?

Da darf es dann ja auch nur eine Möglichkeit geben.

Wie sieht man das?



Bezug
                        
Bezug
Automorphismen / Konjugierte: Antwort
Status: (Antwort) fertig Status 
Datum: 07:54 Di 18.06.2013
Autor: felixf

Moin!

>  > Nun, wenn [mm]\beta \in K(\alpha)[/mm] liegt, dann muss der

> eindeutig
> > bestimmte Homomorphimus $ [mm]K(\alpha) \to[/mm] C $ der $ [mm]\alpha[/mm] $
> auf $  
> > [mm]\alpha[/mm] $ abbildet (naemlich die Inklusionsabbildung) auch $
> [mm]\beta[/mm] $ auf
> > [mm]\beta[/mm] abbilden.
>
> Aus der Tatsache, dass [mm]\alpha[/mm] auf sich selbst abgebildet
> wird, kann ich folgern, dass alle Elemente aus [mm]K(\alpha)[/mm]
> auf sich selbst abgebildet werden. Also auch [mm]\beta, \gamma, \delta,[/mm]
> falls sie in [mm]K(\alpha)[/mm] liegen.
>  
> Wenn jetzt jedoch [mm]\alpha[/mm] auf [mm]\beta[/mm] abgebildet worauf kann
> dann z.B. [mm]\gamma[/mm] abgebildet werden?

Wenn [mm] $\gamma \in K(\alpha)$ [/mm] ist, dann gibt es [mm] $a_i \in [/mm] K$ mit [mm] $\gamma [/mm] = [mm] \sum_{i=0}^n a_i \alpha^i$. [/mm] Damit ist das Bild von [mm] $\gamma$ [/mm] durch das von [mm] $\alpha$ [/mm] bestimmt, da der Homomorphismus $K$-linear ist.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]