matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperAutom. endlicher zykl. Gruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Autom. endlicher zykl. Gruppen
Autom. endlicher zykl. Gruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Autom. endlicher zykl. Gruppen: Struktur von Aut(G)
Status: (Frage) beantwortet Status 
Datum: 19:14 Do 24.03.2016
Autor: Marcel

Aufgabe
Ist $G=<a>$ eine ENDLICHE, ZYKLISCHE Gruppe der Ordnung n, so ist Aut(G) isomorph zu [mm] $\IZ_n^\times$. [/mm]


Hallo,

ich dachte eigentlich, dass ich den Beweis dazu verstehe/verstanden hätte.
Man definiert

    [mm] $\psi \colon \IZ_n^\times \to \text{Aut}(G)$ [/mm] mit [mm] $\psi(\overline{k}):=\phi_k$ [/mm]

mit [mm] $\phi_k(g):=g^k$ [/mm] für alle $k [mm] \in [/mm] G$

und zeigt, dass [mm] $\psi$ [/mm]

    1. wohldefiniert
    2. a) injektiv und b) surjektiv

sowie

    3. ein Monomorphismus

ist.

In merkwürdiger Weise bin ich aber bei 3. verwirrt: In dem Buch (Algebra, von
Meyberg und Karphinger) wird immer für

    $f,g [mm] \colon [/mm] G [mm] \to [/mm] G$

dann

    $fg$ anstatt $f [mm] \circ [/mm] g$

verwendet.

Ich dachte, in obigem Satz ist [mm] $\text{Aut}(G)$ [/mm] auch mit [mm] $\circ$ [/mm] versehen?

Beim Beweis dieses Satzes wird aber

    [mm] $\psi(\overline{k}+\overline{\ell})=\psi(\overline{k+\ell})=\phi_{k+\ell}=\phi_k \phi_\ell$ [/mm]

benutzt. Nun ist aber

    [mm] $\phi_k \circ \phi_\ell=\phi_{k * \ell}$ [/mm]

Ist da vielleicht ein Fehler im Buch, dass gar nicht

    [mm] $\psi(\overline{k}\red{+}\overline{\ell})=\psi(\overline{k})\psi(\overline{\ell})$ [/mm]

gemeint ist, sondern

    [mm] $\psi(\overline{k} \cdot \overline{\ell})=\psi(\overline{k})\psi(\overline{\ell})$? [/mm]

Also ist [mm] $(\text{Aut}(G),\circ)$ [/mm] isomorph zu [mm] $(\IZ_n^\times, \cdot)$? [/mm] Das Plus bei
[mm] $\IZ_n^\times$ [/mm] verwirrt mich nämlich...

Gruß,
  Marcel



        
Bezug
Autom. endlicher zykl. Gruppen: Antwort (nicht fertig)
Status: (Antwort) noch nicht fertig Status 
Datum: 21:17 Do 24.03.2016
Autor: UniversellesObjekt

Es stimmt natürlich, dass [mm] $(\IZ/n)^\times$ [/mm] mit Multiplikation ausgestattet sein sollte.

Übrigens ist aus allgemeinen Gründen [mm] $\operatorname{End}_\IZ(\IZ/n)= \operatorname{End}_{\IZ/n}(\IZ/n)\cong \IZ/n$ [/mm] als Ringe. Übergang zu den Einheitengruppen liefert die Behauptung.

Liebe Grüße,
UniversellesObjekt

Bezug
                
Bezug
Autom. endlicher zykl. Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:29 Do 24.03.2016
Autor: Marcel

Hallo,

> Es stimmt natürlich, dass [mm](\IZ/n)^\times[/mm] mit
> Multiplikation ausgestattet sein sollte.


dann sollte dort auch

    [mm] $\psi(\overline{k}\cdot \overline{\ell})=...=\phi_{k\;\cdot\;\ell}$ [/mm]

gerechnet werden. Die schreiben sowas wie

    [mm] $\psi(\overline{k}\red{+} \overline{\ell})=...=\phi_{k\;\red{+}\;\ell}=\phi_k \phi_\ell$ [/mm]

Ich hatte sogar zunächst selbst einfach

    [mm] $\phi_k(g)\phi_\ell(g)=g^kg^\ell=g^{k+\ell}=\phi_{k+\ell}$ [/mm]

gerechnet. Aber danach war ich verwirrt, weil doch auf Aut(G) gar nicht [mm] $\cdot$ [/mm]
als "Multiplikation" (von Funktionswerten), sondern als Verknüpfung aufgefasst
wird; entsprechend ist

    [mm] $\phi_k \phi_\ell=\phi_{k * \ell}$, [/mm]

da

    [mm] $(\phi_k \circ \phi_\ell)(g)=\phi_k(g^\ell)=(g^\ell)^k=g^{\ell*k}$. [/mm]


Wenigstens war die Verwirrung konsequent. ;-)

Also vielleicht kann man den Autoren ja mal mitteilen, dass dort

    [mm] $\psi(\overline{k}\cdot \overline{\ell})=...=\phi_{k\;\cdot\;\ell}=\phi_k \circ \phi_\ell$ [/mm]

nachgerechnet werden sollte. ;)

> Übrigens ist aus allgemeinen Gründen
> [mm]\operatorname{End}_\IZ(\IZ/n)= \operatorname{End}_{\IZ/n}(\IZ/n)\cong \IZ/n[/mm]
> als Ringe. Übergang zu den Einheitengruppen liefert die
> Behauptung.

Ein anderes Mal denke ich vielleicht über sowas nach. Obiges reicht mir
gerade ;)
Dennoch auch Danke dafür. :-)

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]