matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenstochastische ProzesseAussterbewahrscheinlichkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "stochastische Prozesse" - Aussterbewahrscheinlichkeit
Aussterbewahrscheinlichkeit < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussterbewahrscheinlichkeit: Galton- Watson Prozess
Status: (Frage) beantwortet Status 
Datum: 19:16 Sa 13.11.2010
Autor: glassdanse

Aufgabe
Berechne die Aussterbewahrscheinlichkeit eines Zellteilungsprozesses, der von einem GWP [mm] (Z_{n})_{n\ge0} [/mm] beschrieben wird und der Reproduktionsverteilung [mm] p_{0},p_{2}>0, p_{1}\in[0,1) [/mm] und sonst [mm] p_{n}=0. [/mm]

Eigentlich keine schwere Aufgabe. Ich habe meinen Satz, der besagt dass die Aussterbewahrscheinlichkeit durch den kleinsten Fixpunkt der erzeugenden Funktion f im Intervall [0,1] gegeben ist. Also stelle ich meine erzeugende Funktion auf und erhalte
f(s)= [mm] p_{2}s^{2} [/mm] + [mm] p_{1}s [/mm] + [mm] p_{0} [/mm]
Ich setze diese gleich s und erhalte somit
[mm] 0=p_{2}s^{2} [/mm] + [mm] (p_{1}-1)s [/mm] + [mm] p_{0} [/mm]

Jetzt muss ich ja eigentlich nur auflösen nach [mm] s_{1,2}, [/mm] dazu gibt es ja die quadratische Formel. Aber dauernd drehe ich mich im Kreis und kriege es einfach nicht aufgelöst. Hab es dann mit Vieta und sogar quadratischer Ergänzung versucht und nix rausbekommen. Bin ich jetzt zu blöd eine quadratische Gleichung zu lösen oder gibt es noch irgendeine Methode, auf die ich nicht gekommen bin?

        
Bezug
Aussterbewahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:10 Sa 13.11.2010
Autor: glassdanse

Hat sich erledigt! Hab noch ein bisschen drüber nachgedacht und bin drauf gekommen, da ich ja weiß, dass 1 ein Fixpunkt ist, komme ich mit Polynomdivision und ein bisschen Denken zum zweiten Fixpunkt.

Bezug
        
Bezug
Aussterbewahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 So 14.11.2010
Autor: Aurelie

Hallo,
Ich verstehe dein Problem nicht ganz.
Du musst doch [mm]0=p_2s^2+(p_1-1)s+p_0[/mm] nach s auflösen weil du suchst doch den kleinsten Fixpunkt. Dann ist das mit der quadratischen Formel [mm]s_{1/2}=-\frac{p_1-1}{2p_2}\pm\sqrt{\left(\frac{p_1-1}{2p_2}\right)^2-\frac{p_0}{p_2}}[/mm] berücksichtig man noch dass der Fixpunkt in [mm][\;0,1\;][/mm] liegen soll dann ist [mm]s=-\frac{p_1-1}{2p_2}+\sqrt{\left(\frac{p_1-1}{2p_2}\right)^2-\frac{p_0}{p_2}}[/mm]  Fixpunkt (falls im Intervall?)


Gruß, Aurelie


Bezug
                
Bezug
Aussterbewahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:47 So 14.11.2010
Autor: glassdanse

Ja, das ist schon klar, aber versuch das mal aufzulösen. ;)
Wie gesagt, Problem ist gelöst, mit Polynomdivision ist es ganz simpel.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]