Aussonderungsaxiom < axiomatisch < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Assonderungsaxiom: Zu jeder Bedingung C(x) und zu jeder Menge A existiert eine Menge B mit [mm] \forall [/mm] x: [x [mm] \in [/mm] B [mm] \gdw [/mm] x [mm] \in [/mm] und C(x) gilt].
Ein Beispiel: Für alle natürlichen Zahlen (mit der 0) bedeutet X [mm] \in [/mm] Y X [mm] \le [/mm] Y.
Das Aussonderungsaxiom gilt hier nicht: Ist C(x): [mm] \forall [/mm] Y: [mm] y\in [/mm] und y [mm] \not= [/mm] x, also [mm] x\not=0. [/mm] Gemäß Aussonderungsaxiom gibt es zu jeder Zahl A eine natürliche Zahl mit der Eigenschaft: [mm] \forall [/mm] x: [mm] x\in [/mm] B [mm] \gdw x\in [/mm] A und [mm] x\not=0 [/mm] |
Guten Abend,
ich weiß nicht ob ich das Beispiel richtig verstanden habe. Meine Erklärung: Das Aussonderungsaxiom gilt nicht, da in einer Menge B immer die Null enthalten ist (da Null kleinergleich jeder natürlichen Zahl). Habe ich also ein x aus A, dass die Bedingung erfüllt, kann ich es in keiner Menge B aus A angeben, da in dieser Menge auch immer die Null sien wird, und ich somit nicht von x Element B auf x ungleich 0 schließen kann. Hier die leere Menge als Lösung zu wählen wäre falsch, da es wohl Element aus A gibt, die die Bedingung erfüllen, ich sie jedoch nicht in einer Menge zusammenfassen kann.
Stimmt das so?
Gruß
Larousse
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:20 Mi 22.10.2008 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|