matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAussagenlogische Formel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Aussagenlogische Formel
Aussagenlogische Formel < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagenlogische Formel: Formel konstruieren
Status: (Frage) beantwortet Status 
Datum: 12:30 Di 22.11.2005
Autor: MrPink

Hallo, ich habe die folgende Aufgabe und soll nun diese Formel konstrieren. Kann mir jemand einen ansatz für die Formel in QAL geben ?
Die Formel in normaler Aussagenlogik sollte ich hin bekommen, diese wird aber extrem kompliziert, da ich immer auf den übertrag zurück greifen muss, hat dort jemand ne idee, wie man dass irgendwie gut machen, ohne eine riesige monster Formel heraus zu bekommen ?

Danke im Voraus

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Aussagenlogische Formel: diesmal mit Korrektur...
Status: (Antwort) fertig Status 
Datum: 11:32 Mi 23.11.2005
Autor: Toellner

Hallo Mr Pink,

die Formeln für "a+b+c=d mod 2" überlasse ich Dir...

[mm] \exists k_0 [/mm] : [mm] \exists k_1 [/mm] :... [mm] \exists k_{n+1} :\forall [/mm] i, 0< [mm] i\le [/mm] n+1:
  [mm] k_0 [/mm] = 0
[mm] \wedge (k_i [/mm] = 1 [mm] \gdw ((x_{i-1} [/mm] = 1  [mm] \wedge y_{i-1} [/mm] = 1)  [mm] \vee (x_{i-1} [/mm] = 1  [mm] \wedge k_{i-1} [/mm] = 1)  [mm] \vee (y_{i-1} [/mm] = 1  [mm] \wedge k_{i-1} [/mm] = 1)) [mm] \wedge (x_i [/mm] + [mm] y_i [/mm] + [mm] k_i [/mm] = [mm] z_i [/mm] mod 2)
wobei [mm] x_{n+1} [/mm] = [mm] y_{n+1} [/mm] = 0 zu setztem ist.

Wenn Du die Serie von "Es existiert [mm] k_i" [/mm] am Anfang nicht haben willst, kannst Du eine Formel für "k = [mm] (k_0;k_1;...;k_{n+1}) [/mm] ist (n+1)-Tupel" oder
"k: [mm] \{0,1,...,n+1\}->\{0,1\} [/mm] ist Funktion" entwickeln und auf "Es existiert k:... " reduzieren.

Gruß, Richard

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]