matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAussagenlogikAussagenlogik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Aussagenlogik" - Aussagenlogik
Aussagenlogik < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagenlogik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 So 07.10.2012
Autor: Thomas000

Aufgabe
Formalisieren und beweisen Sie!
A) Für alle natürlichen Zahlen n gilt: Wenn n gerade ist, dann ist auch das Quadrat von n gerade.
B) Die Quadrate aller ungeraden natürlichen Zahlen sind ungerade.
C) Wenn das Quadrat einer natürlichen Zahl n gerade ist, dann ist auch n selbst gerade.
D) Wenn das Quadrat m einer natürlichen Zahl ungerade ist, dann ist auch wurzel{m} ungerade.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Meine Lösung zu a wäre:
[mm] \forall [/mm] n [mm] \in \IN [/mm] : n gerade [mm] \gdw [/mm] n² gerade

Es sei n gerade.
[mm] \exists [/mm] k [mm] \in \IN: [/mm] n=2k

n² = 4k²
n² = 2 * 2k²
qed

b) [mm] \forall [/mm] n [mm] \in \IN [/mm] : n ungerade [mm] \gdw [/mm] n² ungerade

Es sei n ungerade.
[mm] \exists [/mm] k [mm] \in \IN: [/mm] n=2k + 1

n²= (2k+1)²
n²= 4k² + 4k + 1
n²= 2* (2k²+2k) + 1

qed

Könnt ihr mir bei c und d helfen! Ich denke mal, dass ich dort mit [mm] \exists [/mm] arbeiten muss, bei den Formulierungen.

Danke




        
Bezug
Aussagenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 So 07.10.2012
Autor: schachuzipus

Hallo Thomas000,


> Formalisieren und beweisen Sie!
>  A) Für alle natürlichen Zahlen n gilt: Wenn n gerade
> ist, dann ist auch das Quadrat von n gerade.
>  B) Die Quadrate aller ungeraden natürlichen Zahlen sind
> ungerade.
>  C) Wenn das Quadrat einer natürlichen Zahl n gerade ist,
> dann ist auch n selbst gerade.
>  D) Wenn das Quadrat m einer natürlichen Zahl ungerade
> ist, dann ist auch wurzel{m} ungerade.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Meine Lösung zu a wäre:
>  [mm]\forall[/mm] n [mm]\in \IN[/mm] : n gerade [mm]\gdw[/mm] n² gerade

Wieso die Äquivalenz? Da steht doch im Text nichts von einer "genau dann, wenn"-Beziehung.

[mm]\forall n\in\IN: n \ \text{gerade} \ \red{\Rightarrow} \ n^2 \ \text{gerade}[/mm]

Und das beweist du im Folgenden ja auch, wenn auch sämtliche Folgerungspfeile fehlen, was massiven Punktabzug gäbe in einer Übung oder Klausur ...

>  
> Es sei n gerade.
>  [mm]\exists[/mm] k [mm]\in \IN:[/mm] n=2k
>  
> n² = 4k²
>  n² = 2 * 2k²
>  qed

Bis auf die fehlenden Beziehungen (die ich mir passend dazu denke) zwischen den leer im Raum stehenden Zeilen ist das richtig.

>  
> b) [mm]\forall[/mm] n [mm]\in \IN[/mm] : n ungerade [mm]\gdw[/mm] n² ungerade

Wieder ist nur die Implikation [mm]\Rightarrow[/mm] formuliert, die du auch beweist. [mm]\Leftarrow[/mm] beweist du im Weiteren nicht (steht auch verbal nicht in der Aufgabe)

Wobei in A) und B) auch die umgekehrte Richtung gilt. Das kannst du dir ja mal überlegen. Wieso folgt aus [mm] $n^2$ [/mm] gerade auch $n$ gerade [mm] ($n\in\IN$) [/mm] ?

>  
> Es sei n ungerade.
>  [mm]\exists[/mm] k [mm]\in \IN:[/mm] n=2k + 1
>  
> n²= (2k+1)²
>  n²= 4k² + 4k + 1
>  n²= 2* (2k²+2k) + 1
>  
> qed

Wie oben ... Idee ist richtig, formal ziemlicher Murks

>  
> Könnt ihr mir bei c und d helfen! Ich denke mal, dass ich
> dort mit [mm]\exists[/mm] arbeiten muss, bei den Formulierungen.

C) [mm]\forall n\in\IN: n^2 \ \text{gerade} \ \Rightarrow \ n \ \text{gerade}[/mm]

D) Nenne die (bel., aber dann feste) nat. Zahl [mm]n[/mm]

Dann ist [mm]m=n^2[/mm]

Versucht die Aussage wie in den anderen Teilen als Implikation zu schreiben ...

>  
> Danke
>  
>
>  

Gruß

schachuzipus


Bezug
                
Bezug
Aussagenlogik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 So 07.10.2012
Autor: Thomas000

Aufgabe
zu c)
Sei n² gerade.
Angenommen n wäre nicht gerade.

[mm] \to \exists [/mm] k [mm] \in \IN [/mm] : n=2k+1
[mm] \to [/mm] n²=4k²+4k+1=2*(2k²+2k)+1

also n² ungerade (Widerspruchzeichen)
n muss also gerade sein.

ich könnte c doch auch über einen indirekten weg beweisen, indem ich zeige, dass, wenn n ungerade ist, ein widerspruch erfolgt. n also gerade sein muss?! habs mal versucht oben darzustellen ;)
[mm] \to \exists [/mm] k [mm] \in \IN [/mm] : n=2k+1
[mm] \to [/mm] n²=4k²+4k+1=2*(2k²+2k)+1

also n² ungerade (Widerspruchzeichen)
n muss also gerade sein.


Bezug
                        
Bezug
Aussagenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 So 07.10.2012
Autor: Axiom96

Hallo,

> zu c)
> Sei n² gerade.
>  Angenommen n wäre nicht gerade.
>  
> [mm]\to \exists[/mm] k [mm]\in \IN[/mm] : n=2k+1
>  [mm]\to[/mm] n²=4k²+4k+1=2*(2k²+2k)+1
>  
> also n² ungerade (Widerspruchzeichen)
>  n muss also gerade sein.
>  ich könnte c doch auch über einen indirekten weg
> beweisen, indem ich zeige, dass, wenn n ungerade ist, ein
> widerspruch erfolgt. n also gerade sein muss?! habs mal
> versucht oben darzustellen ;)
>  [mm]\to \exists[/mm] k [mm]\in \IN[/mm] : n=2k+1
>  [mm]\to[/mm] n²=4k²+4k+1=2*(2k²+2k)+1
>  
> also n² ungerade (Widerspruchzeichen)
>  n muss also gerade sein.
>  

Das ist so richtig, allerdings hast du den Fall n=1 nicht mit eingeschlossen. Schreibe also besser [mm] k\in\IN\cup\{0\}. [/mm]

Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]