matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAussagenlogikAussagenlogik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Aussagenlogik" - Aussagenlogik
Aussagenlogik < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagenlogik: Äquivalenzumformung
Status: (Frage) beantwortet Status 
Datum: 12:49 Di 26.07.2011
Autor: DARKMAN_X

Aufgabe
Gegeben seien die folgenden aussagenlogische Formeln:
F = [mm] \neg(A \Rightarrow [/mm] B) [mm] \wedge [/mm] (A [mm] \gdw [/mm] C)
und
G = A [mm] \wedge \neg [/mm] B [mm] \wedge [/mm] C

Wandeln Sie beide Formeln mit Hilfe der Aquivalenzgesetze ineinander um. Geben Sie bei jeder Umformung das verwendete Aquivalenzgesetz an.

F = [mm] \neg(A \Rightarrow [/mm] B) [mm] \wedge [/mm] (A [mm] \gdw [/mm] C)
= [mm] \neg (\neg [/mm] A [mm] \vee [/mm] B) [mm] \wedge [/mm] ((A [mm] \wedge [/mm] C) [mm] \vee (\neg [/mm] A [mm] \wedge \neg [/mm] C))

Wende nun das Distributivitätsgesetzt an

= (A [mm] \wedge \neg [/mm] B) [mm] \wedge [/mm] ((A [mm] \vee \neg [/mm] A) [mm] \wedge [/mm] (A [mm] \vee \neg [/mm] C) [mm] \wedge [/mm] (C [mm] \vee \neg [/mm] A) [mm] \wedge [/mm] (C [mm] \vee \neg [/mm] C))

So jetzt kürze ich...

= (A [mm] \wedge \neg [/mm] B) [mm] \wedge [/mm] ((A [mm] \vee \neg [/mm] C) [mm] \wedge [/mm] (C [mm] \vee \neg [/mm] A))

So ab hier komme ich dann irgendwie nicht mehr weiter...

Würde mich über eure Antworten freuen.
Danke im Vorraus.
Diese Frage wurde in keinem anderem Forun gestellt.

MfG
[mm] DARKMAN_X [/mm]

        
Bezug
Aussagenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Di 26.07.2011
Autor: Sigrid

Hallo [mm] Darkmann_X [/mm]


> Gegeben seien die folgenden aussagenlogische Formeln:
>  F = [mm]\neg(A \Rightarrow[/mm] B) [mm]\wedge[/mm] (A [mm]\gdw[/mm] C)
> und
> G = A [mm]\wedge \neg[/mm] B [mm]\wedge[/mm] C
>  
> Wandeln Sie beide Formeln mit Hilfe der Aquivalenzgesetze
> ineinander um. Geben Sie bei jeder Umformung das verwendete
> Aquivalenzgesetz an.
>  F = [mm]\neg(A \Rightarrow[/mm] B) [mm]\wedge[/mm] (A [mm]\gdw[/mm] C)
> = [mm]\neg (\neg[/mm] A [mm]\vee[/mm] B) [mm]\wedge[/mm] ((A [mm]\wedge[/mm] C) [mm]\vee (\neg[/mm] A
> [mm]\wedge \neg[/mm] C))


(A [mm]\wedge \neg[/mm] B) [mm]\wedge[/mm] ((A [mm]\wedge[/mm] C) [mm]\vee (\neg[/mm] A [mm]\wedge \neg[/mm] C))

So weit hattest Du es ja auch
Jetzt wende das Distributivgesetz an, aber nicht die Richtung, die Du gewählt hast.

[(A [mm]\wedge \neg[/mm] B) ) [mm]\wedge [/mm] (A [mm]\wedge[/mm] C)] [mm]\vee[/mm] [(A [mm]\wedge \neg[/mm] B) ) [mm]\wedge [/mm] ( [mm] \neg [/mm] A [mm]\wedge[/mm] [mm] \neg [/mm] C)]

Jetzt bist Du fast fertig.

Gruß
Sigrid




>  
> Wende nun das Distributivitätsgesetzt an
>  
> = (A [mm]\wedge \neg[/mm] B) [mm]\wedge[/mm] ((A [mm]\vee \neg[/mm] A) [mm]\wedge[/mm] (A [mm]\vee \neg[/mm]
> C) [mm]\wedge[/mm] (C [mm]\vee \neg[/mm] A) [mm]\wedge[/mm] (C [mm]\vee \neg[/mm] C))
>  
> So jetzt kürze ich...
>  
> = (A [mm]\wedge \neg[/mm] B) [mm]\wedge[/mm] ((A [mm]\vee \neg[/mm] C) [mm]\wedge[/mm] (C [mm]\vee \neg[/mm]
> A))
>  
> So ab hier komme ich dann irgendwie nicht mehr weiter...
>  
> Würde mich über eure Antworten freuen.
>  Danke im Vorraus.
>  Diese Frage wurde in keinem anderem Forun gestellt.
>  
> MfG
>  [mm]DARKMAN_X[/mm]  


Bezug
                
Bezug
Aussagenlogik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:48 Di 26.07.2011
Autor: DARKMAN_X

Danke für die schnelle Antwort.

[mm] [(A\wedge \neg [/mm] B) [mm] \wedge [/mm] (A [mm] \wedge [/mm] C)] [mm] \vee [/mm] [(A [mm] \wedge \neg [/mm] B) [mm] \wedge (\neg [/mm] A [mm] \wedge \neg [/mm] C)]

Das kommt bei raus wenn ich die innerhalb der eckigen Klammern multipliziere....

[(A [mm] \wedge [/mm] A) [mm] \wedge [/mm] (A [mm] \wedge [/mm] C) [mm] \wedge (\neg [/mm] B [mm] \wedge [/mm] C)] [mm] \vee [/mm] [(A [mm] \wedge \neg [/mm] A) [mm] \wedge [/mm] (A [mm] \wedge \neg [/mm] C) [mm] \wedge (\neg [/mm] B [mm] \wedge [/mm] A) [mm] \wedge (\neg [/mm] B [mm] \wedge \neg [/mm] C)]

Das kommt bei raus...
Weiss leider jetzt nicht mehr weiter...

Bezug
                        
Bezug
Aussagenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Di 26.07.2011
Autor: Sigrid

Hallo [mm] DARKMAN_X [/mm]

> Danke für die schnelle Antwort.
>  
> [mm][(A\wedge \neg[/mm] B) [mm]\wedge[/mm] (A [mm]\wedge[/mm] C)] [mm]\vee[/mm] [(A [mm]\wedge \neg[/mm]
> B) [mm]\wedge (\neg[/mm] A [mm]\wedge \neg[/mm] C)]
>
> Das kommt bei raus wenn ich die innerhalb der eckigen
> Klammern multipliziere....

Vorsicht, Jetzt greift das Assoziativgesetz. Du hast innerhalb der Eckigen Klammern nur noch die Verknüpfung  [mm]\wedge [/mm]

Gruß
Sigrid

>  
> [(A [mm]\wedge[/mm] A) [mm]\wedge[/mm] (A [mm]\wedge[/mm] C) [mm]\wedge (\neg[/mm] B [mm]\wedge[/mm] C)]
> [mm]\vee[/mm] [(A [mm]\wedge \neg[/mm] A) [mm]\wedge[/mm] (A [mm]\wedge \neg[/mm] C) [mm]\wedge (\neg[/mm]
> B [mm]\wedge[/mm] A) [mm]\wedge (\neg[/mm] B [mm]\wedge \neg[/mm] C)]
>  
> Das kommt bei raus...
>  Weiss leider jetzt nicht mehr weiter...


Bezug
                                
Bezug
Aussagenlogik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Di 26.07.2011
Autor: DARKMAN_X

Tut mir leid...Ich komme immer noch nicht dadrauf...Verstehe das einfach nicht...

Die Assoziativität besagt:

((F [mm] \wedge [/mm] G) [mm] \wedge [/mm] H) [mm] \equiv [/mm] (F [mm] \wedge [/mm] (G [mm] \wedge [/mm] H))
((F [mm] \vee [/mm] G) [mm] \vee [/mm] H) [mm] \equiv [/mm] (F [mm] \vee [/mm] (G [mm] \vee [/mm] H))

So nun weiß ich jetzt nicht, wie ich es hier anwenden soll...

[(A [mm] \wedge \neg [/mm] B) [mm] \wedge [/mm] (A [mm] \wedge [/mm] C)] [mm] \vee [/mm] [(A [mm] \wedge \neg [/mm] B) [mm] \wedge (\neg [/mm] A [mm] \wedge \neg [/mm] B)]



Bezug
                                        
Bezug
Aussagenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Di 26.07.2011
Autor: Sigrid

Hallo,

> Tut mir leid...Ich komme immer noch nicht
> dadrauf...Verstehe das einfach nicht...
>  
> Die Assoziativität besagt:
>  
> ((F [mm]\wedge[/mm] G) [mm]\wedge[/mm] H) [mm]\equiv[/mm] (F [mm]\wedge[/mm] (G [mm]\wedge[/mm] H))
>  ((F [mm]\vee[/mm] G) [mm]\vee[/mm] H) [mm]\equiv[/mm] (F [mm]\vee[/mm] (G [mm]\vee[/mm] H))
>
> So nun weiß ich jetzt nicht, wie ich es hier anwenden
> soll...
>  
> [(A [mm]\wedge \neg[/mm] B) [mm]\wedge[/mm] (A [mm]\wedge[/mm] C)] [mm]\vee[/mm] [(A [mm]\wedge \neg[/mm]
> B) [mm]\wedge (\neg[/mm] A [mm]\wedge \neg[/mm] B)]
>  
>  

Du hast recht, Du brauchst natürlich auch noch das Kommutativgesetz. Jetzt ist die Frage, wie genau Du jeden Schritt belegen musst. Wenn Du mehrere Schritte auf einmal durchführen darfst, kannst Du einfach die runden Klammern weglassen und dann geeignet umstellen.
Wenn Du jeden Schritt blegen musst, wirds etwas aufwendiger. Ich zeig mal den Anfang für die 1. Klammer:

(A [mm]\wedge \neg[/mm] B) [mm]\wedge[/mm] (A [mm]\wedge[/mm]C)

([mm] \neg[/mm] B [mm]\wedge [/mm] A) [mm]\wedge [/mm] (A [mm]\wedge[/mm]C)

[mm] \neg[/mm] B [mm]\wedge [/mm][( A [mm]\wedge [/mm] (A [mm]\wedge[/mm]C))]

[mm] \neg[/mm] B [mm]\wedge [/mm][( A [mm]\wedge [/mm] A )[mm]\wedge[/mm]C]

Kommst Du jetzt weiter?

Gruß
Sigrid


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]