matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesAussagenlogik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - Aussagenlogik
Aussagenlogik < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagenlogik: Auflösen von Aussagenverb.
Status: (Frage) beantwortet Status 
Datum: 12:34 Fr 06.01.2006
Autor: SEAGATE

Aufgabe
Anna liebt Peter oder Michael oder ist es nicht so, daß Anna Peter liebt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


hallo,

vorab die original-aufgabenstellung, die ich wie folgt in die schreibweise der logik gebracht habe:

A [mm] \wedge [/mm] (P [mm] \vee [/mm] M)  [mm] \vee [/mm] (A [mm] \wedge \neg [/mm] P)

der 1. Teil der Aussagenverbindung A [mm] \wedge [/mm] (P [mm] \vee [/mm] M) ist nach dem Distributivgesetz Synonym für:

(A [mm] \wedge [/mm] P) [mm] \vee [/mm] (A [mm] \wedge [/mm] M) .

Also stellt sich die Aussagenverbindung wie folgt dar:

(A [mm] \wedge [/mm] P) [mm] \vee [/mm] (A [mm] \wedge [/mm] M) [mm] \vee [/mm] (A [mm] \wedge \neg [/mm] P)

Nun komme ich nicht weiter, weil ich der Meinung bin, daß (A [mm] \wedge \neg [/mm] P)
gleichbedeutend mit A [mm] \wedge \{F\} [/mm] ist. (F = Falsch):

(A [mm] \wedge [/mm] P) [mm] \vee [/mm] (A [mm] \wedge [/mm] M) [mm] \vee [/mm] (A [mm] \wedge \{F\}) [/mm]

Meine Überlegung:

Da nach den Regeln der Negationen gilt:

(P [mm] \wedge \neg [/mm] P) [mm] \gdw \{F\} [/mm]

habe ich also eine Verneinung auf der rechten Gleichungsseite und eine Zustimmung für Peter auf der linken Gleichungsseite, was mir wiederum "Falsch" zurück liefert.

Damit wäre für mich die Verneinung für Peter bewiesen, und das Wahr für Michael erbracht:

(A [mm] \wedge [/mm] P) [mm] \vee [/mm] (A [mm] \wedge [/mm] M) [mm] \vee [/mm] (A [mm] \wedge \{F\}) [/mm]

nur wie löse ich das jetzt weiter auf? fällt denn Peter jetzt nicht automatisch durch die erhaltene F-Aussage auch aus der linken seite raus,
sodaß links nur noch (A [mm] \wedge [/mm] M) übrig bleibt?

sollte man vieleicht hier diese komplette aussagenverbindung mit einer
wahrheitstabelle darstellen?

kann mir jemand vieleicht einen kleinen Ansatz zur Hilfe geben?

Liebe Grüsse, und herzlichen Dank

SEAGATE



        
Bezug
Aussagenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Fr 06.01.2006
Autor: mathiash


> Anna liebt Peter oder Michael oder ist es nicht so, daß
> Anna Peter liebt?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>
> hallo,
>  
> vorab die original-aufgabenstellung, die ich wie folgt in
> die schreibweise der logik gebracht habe:
>  
> A [mm]\wedge[/mm] (P [mm]\vee[/mm] M)  [mm]\vee[/mm] (A [mm]\wedge \neg[/mm] P)
>  
> der 1. Teil der Aussagenverbindung A [mm]\wedge[/mm] (P [mm]\vee[/mm] M) ist
> nach dem Distributivgesetz Synonym für:
>  
> (A [mm]\wedge[/mm] P) [mm]\vee[/mm] (A [mm]\wedge[/mm] M) .
>  
> Also stellt sich die Aussagenverbindung wie folgt dar:
>  
> (A [mm]\wedge[/mm] P) [mm]\vee[/mm] (A [mm]\wedge[/mm] M) [mm]\vee[/mm] (A [mm]\wedge \neg[/mm] P)
>  
> Nun komme ich nicht weiter, weil ich der Meinung bin, daß
> (A [mm]\wedge \neg[/mm] P)
>  gleichbedeutend mit A [mm]\wedge \{F\}[/mm] ist. (F = Falsch):

Hallo,

nein, Du kannst doch A ausklammern (distrib.) und bekommst

[mm] A\wedge (P\vee\neg P\vee [/mm] M)       was mit [mm] P\vee\neg P\vee [/mm] M [mm] \equiv 1\vee M\equiv [/mm] 1

aequivalent zu [mm] 1\wedge [/mm] A  [mm] \equiv [/mm] A  ist.  

Also: Anna liebt.    (Na, immerhin ! )

Viele Gruesse,

Mathias

>  
> (A [mm]\wedge[/mm] P) [mm]\vee[/mm] (A [mm]\wedge[/mm] M) [mm]\vee[/mm] (A [mm]\wedge \{F\})[/mm]
>  
> Meine Überlegung:
>  
> Da nach den Regeln der Negationen gilt:
>  
> (P [mm]\wedge \neg[/mm] P) [mm]\gdw \{F\}[/mm]
>  
> habe ich also eine Verneinung auf der rechten
> Gleichungsseite und eine Zustimmung für Peter auf der
> linken Gleichungsseite, was mir wiederum "Falsch" zurück
> liefert.
>  
> Damit wäre für mich die Verneinung für Peter bewiesen, und
> das Wahr für Michael erbracht:
>  
> (A [mm]\wedge[/mm] P) [mm]\vee[/mm] (A [mm]\wedge[/mm] M) [mm]\vee[/mm] (A [mm]\wedge \{F\})[/mm]
>  
> nur wie löse ich das jetzt weiter auf? fällt denn Peter
> jetzt nicht automatisch durch die erhaltene F-Aussage auch
> aus der linken seite raus,
>  sodaß links nur noch (A [mm]\wedge[/mm] M) übrig bleibt?
>  
> sollte man vieleicht hier diese komplette
> aussagenverbindung mit einer
>  wahrheitstabelle darstellen?
>  
> kann mir jemand vieleicht einen kleinen Ansatz zur Hilfe
> geben?
>  
> Liebe Grüsse, und herzlichen Dank
>  
> SEAGATE
>  
>  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]