matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Aussagen wahr?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Aussagen wahr?
Aussagen wahr? < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagen wahr?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:14 Di 26.10.2010
Autor: dennschu

Aufgabe
Prüfen Sie, ob folgende Aussagen wahr sind:
a) Es sei [mm] x\in\IR. [/mm] Aus [mm] \bruch{x}{x^2 + 1} [/mm] > 2 folgt x < [mm] \bruch{1}{2} [/mm]
b) Für ein [mm] x\in\IR [/mm] gilt: [mm] \bruch{x}{x^2 + 1} [/mm] > 2.
c) Jeder periodische Dezimalbruch ist eine rationale Zahl.

Ich weiss eigentlich gar nicht so richtig, was ich bei dieser Aufgabe machen soll.

bei b) habe ich einfach die quadratische Ungleichung gelöst und kam darauf, das es kein [mm] x\in\IR [/mm] gibt, für das diese Ungleichung gilt.

Aber was ist bei den anderen Aufgabenstellungen gemeint?

Danke für eure Hilfe!

        
Bezug
Aussagen wahr?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Di 26.10.2010
Autor: fred97


> Prüfen Sie, ob folgende Aussagen wahr sind:
>  a) Es sei [mm]x\in\IR.[/mm] Aus [mm]\bruch{x}{x^2 + 1}[/mm] > 2 folgt x <

> [mm]\bruch{1}{2}[/mm]
>  b) Für ein [mm]x\in\IR[/mm] gilt: [mm]\bruch{x}{x^2 + 1}[/mm] > 2.

>  c) Jeder periodische Dezimalbruch ist eine rationale
> Zahl.
>  Ich weiss eigentlich gar nicht so richtig, was ich bei
> dieser Aufgabe machen soll.
>  
> bei b) habe ich einfach die quadratische Ungleichung
> gelöst und kam darauf, das es kein [mm]x\in\IR[/mm] gibt, für das
> diese Ungleichung gilt.

Richtig.

Was bedeutet das für die Aussage in a) ? Bedenke: die Implikation A [mm] \Rightarrow [/mm] B ist immer wahr, wenn A falsch ist

zu c):  diese Aussage ist richtig. Warum das richtig ist, kann ich Dir erst sagen, wenn ich weiß, was Ihr in der Vorlesung dazu gemacht habt.

FRED

>  
> Aber was ist bei den anderen Aufgabenstellungen gemeint?
>  
> Danke für eure Hilfe!


Bezug
                
Bezug
Aussagen wahr?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:50 Di 26.10.2010
Autor: dennschu

Hallo Fred,

Danke für deine schnelle Antwort.

Bei a) habe ich jetzt folgendes geschrieben:

Da [mm] (\bruch{x}{x^2 + 1} [/mm] > 2) keine Lösung hat, demnach also falsch ist, folgt dass (x < [mm] \bruch{1}{2}) [/mm] wahr ist und damit die Implikation richtig ist.

Bezug
                        
Bezug
Aussagen wahr?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:04 Di 26.10.2010
Autor: fred97


> Hallo Fred,
>  
> Danke für deine schnelle Antwort.
>  
> Bei a) habe ich jetzt folgendes geschrieben:
>  
> Da [mm](\bruch{x}{x^2 + 1}[/mm] > 2) keine Lösung hat, demnach also
> falsch ist, folgt dass (x < [mm]\bruch{1}{2})[/mm] wahr ist und
> damit die Implikation richtig ist.

so kannst Du das nicht schreiben !

Richtig:  die Aussage " aus  [mm] \bruch{x}{x^2 + 1} [/mm] > 2 folgt x <  [mm] \bruch{1}{2} [/mm] " ist richtig, weil [mm] \bruch{x}{x^2 + 1} [/mm] > 2  für kein x richtig ist.

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]