matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreAussagen über Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mengenlehre" - Aussagen über Menge
Aussagen über Menge < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagen über Menge: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:58 Mi 21.11.2012
Autor: zjay

Aufgabe
Beweisen oder widerlegen Sie die folgenden Aussagen über Mengen.

a) A x ( B [mm] \cap [/mm] C ) = ( A x B ) [mm] \cap [/mm] ( A x C),

b) (A \  B) x (a \ C) = A x A \ B x C.

Hallo,

bei a) bin ich mir relativ sicher, dass es stimmen müsste, hoffe aber, dass ihr es überfliegen könnt und mir ein Feedback gebt.
Das Problem liebt bei b). Ein Komilitone meinte, dass die Aussage nicht stimmt und er deswegen nur ein Gegenbeispiel anführen müsse um sie zu widerlegen. Recht hat er zwar, aber ich mache das lieber allgemeiner.

Hier mein Vorschlag:

a) Sei A x ( B [mm] \cap [/mm] C ) dann sind die Aussagen A x ( B [mm] \cap [/mm] C ) = A x B [mm] \cap [/mm] A x C

wir wissen

B [mm] \cap [/mm] C := {x | x [mm] \in [/mm] B und x [mm] \in C\} [/mm]
A x B := {(a,x) | a [mm] \in [/mm] A, x [mm] \in [/mm] B }
A x C := {(a,c) | a [mm] \in [/mm] A, x [mm] \in [/mm] C }

[mm] \Rightarrow [/mm] A x (B [mm] \cap [/mm] C) := {(a,x)| a [mm] \in [/mm] A, x [mm] \in [/mm] B und x [mm] \in [/mm] C}

[mm] \gdw [/mm] {(a,x)| a [mm] \in [/mm] A, x [mm] \in [/mm] B und a [mm] \in [/mm] A, x [mm] \in [/mm] C} = A x B [mm] \cap [/mm] A x C

Und jetzt b), wo ich mir nicht sicher bin ob man so vorgehen kann:

2b)

(A \ B) x (A \ C) = A x A \ B x C

AxA :={a| a [mm] \in [/mm] A}
BxC :={b,c| b [mm] \in [/mm] B, c [mm] \in [/mm] C}
A \ B :={a [mm] \in [/mm] A, [mm] a\not\in [/mm] B}
A \ C :={a [mm] \in [/mm] A, [mm] a\not\in [/mm] C}

[mm] \rightarrow [/mm] A x A \ B x C := {(a,b,c) | a [mm] \in [/mm] A, a [mm] \not\in [/mm] (B x C), b [mm] \in [/mm] B, c [mm] \in [/mm] C}

[mm] \gdw [/mm] {(a,b,c)| a [mm] \in [/mm] A, a [mm] \not\in [/mm] {b,c| b [mm] \in [/mm] B, c [mm] \in [/mm] C},  b [mm] \in [/mm] B, c [mm] \in [/mm] C}

und jetzt ein kritscher Schritt (?!)

[mm] \gdw [/mm] {(a,b,c)| a [mm] \in [/mm] A, a [mm] \not\in [/mm]  B, a [mm] \not\in [/mm] C,  b [mm] \in [/mm] B, c [mm] \in [/mm] C}

Jetzt wird die rechte und linke Seite gleichgesetzt;:

(A \  B) x (a \ C) = A x A \ B x C

[mm] \gdw [/mm] {a [mm] \in [/mm] A, a [mm] \not\in [/mm] B, a [mm] \not\in [/mm] C} = {(a,b,c)| a [mm] \in [/mm] A, a [mm] \not\in [/mm]  B, a [mm] \not\in [/mm] C,  b [mm] \in [/mm] B, c [mm] \in [/mm] C}

Es gilt {a [mm] \in [/mm] A, a [mm] \not\in [/mm] B, a [mm] \not\in [/mm] C} [mm] \not= [/mm] {(a,b,c)| a [mm] \in [/mm] A, a [mm] \not\in [/mm]  B, a [mm] \not\in [/mm] C,  b [mm] \in [/mm] B, c [mm] \in [/mm] C}

Was haltet ihr davon?

mfg und besten Dank für eure Hilfe,

zjay


        
Bezug
Aussagen über Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 Mi 21.11.2012
Autor: schachuzipus

Hallo zjay,


> Beweisen oder widerlegen Sie die folgenden Aussagen über
> Mengen.
>
> a) A x ( B [mm]\cap[/mm] C ) = ( A x B ) [mm]\cap[/mm] ( A x C),
>  
> b) (A \  B) x (a \ C) = A x A \ B x C.
>  Hallo,
>  
> bei a) bin ich mir relativ sicher, dass es stimmen müsste,
> hoffe aber, dass ihr es überfliegen könnt und mir ein
> Feedback gebt.
>  Das Problem liebt bei b). Ein Komilitone meinte, dass die
> Aussage nicht stimmt und er deswegen nur ein Gegenbeispiel
> anführen müsse um sie zu widerlegen. Recht hat er zwar,
> aber ich mache das lieber allgemeiner.

Wozu?

>  
> Hier mein Vorschlag:
>  
> a) Sei A x ( B [mm]\cap[/mm] C )

Was soll das heißen?

Da steht nix?!

> dann sind die Aussagen A x ( B [mm]\cap[/mm] C ) = A x B [mm]\cap[/mm] A x C


Das ist die zu zeigende Mengengleichheit

>  
> wir wissen
>  
> B [mm]\cap[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

C := {x | x [mm]\in[/mm] B und x [mm]\in C\}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

[ok]

>  A x B := {(a,x) | a  [mm]\in[/mm] A, x [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

B } [ok]

>  A x C := {(a,c) | a [mm]\in[/mm] A, x [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

C }

Was ist nun x?

>  
> [mm]\Rightarrow[/mm] A x (B [mm]\cap[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

C) := {(a,x)| a [mm]\in[/mm] A, x [mm]\in[/mm] B und  x [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

C} [ok]

>  
> [mm]\gdw[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{(a,x)| a [mm]\in[/mm] A, x [mm]\in[/mm] B und a [mm]\in[/mm] A, x [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

C} = A x B  [mm]\cap[/mm] A x C

Das ist ein mathematisches Schwerverbrechen.

Zwei Mengen können gleich sein, was soll es aber bedeuten, dass zwei Mengen äquivalent sind?

Mal strukturierter:

Was bedeutet eine Mengengleichheit [mm]M=N[/mm]?

Dass [mm]M\subset N[/mm] und [mm]N\subset M[/mm]

Du musst also zeigen, dass

1) [mm]A\times (B\cap C)\subset (A\times B)\cap(A\times C)[/mm] , dh. auf Elementebene:

Für jedes [mm]x[/mm] aus der Grundmenge gilt: [mm](x,y)\in A\times (B\cap C) \ \Rightarrow \ (x,y)\in (A\times B)\cap (A\times C)[/mm]

und

2) [mm](A\times B)\cap (A\times C)\subset A\times(B\cap C)[/mm], auf Elementebene analog zu 1)

Hier kann man das in einem Schlag erledigen, indem man zeigt:

[mm](x,y)\in A\times(B\cap C) \ \gdw \ (x,y)\in (A\times B)\cap (A\times C)[/mm]

Die Aussage über die Mengengleichheit wird also auf die Elementebene gebracht und als Äquivalenzaussage umformuliert.

Nun arbeite stur mit den Definitionen:

[mm](x,y)\in A\times (B\cap C) \ \gdw \ x\in A \ \wedge \ y\in (B\cap C) \ \gdw \ x\in A \ \wedge \ y\in B \ \wedge \ y\in C[/mm]

[mm]\gdw (x\in A\wedge y\in B) \ \wedge \ (x\in A\wedge y\in C)[/mm]

Wieso kann ich das machen?

[mm]\gdw (x,y)\in A\times B \ \wedge \ (x,y)\in A\times C[/mm]

[mm]\gdw (x,y)\in (A\times B)\cap (A\times C)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Begründe dabei jeden der Schritte!


>  
> Und jetzt b), wo ich mir nicht sicher bin ob man so
> vorgehen kann:
>  
> 2b)
>  
> (A \ B) x (A \ C) = A x A \ B x C
>  
> AxA :={a| a [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

A} [notok]

In [mm]A\times A[/mm] sind Tupel [mm](x,y)[/mm] mit [mm]x\in A, y\in A[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



>  BxC :={b,c| b [mm]\in[/mm] B, c [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

C} [notok]

>  A \ B :={a [mm]\in[/mm] A, [mm]a\not\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

B}

>  A \ C :={a [mm]\in[/mm] A, [mm]a\not\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

C} [ok]

>  
> [mm]\rightarrow[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

A x A \ B x C := {(a,b,c) | a [mm]\in[/mm] A, a [mm]\not\in[/mm]

> (B x C), b [mm]\in[/mm] B, c [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

C}

Grober Unfug!

>  
> [mm]\gdw[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{(a,b,c)| a [mm]\in[/mm] A, a [mm]\not\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{b,c| b [mm]\in[/mm] B, c [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

C},  

> b [mm]\in[/mm] B, c [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

C}

>  
> und jetzt ein kritscher Schritt (?!)

Das ist vorher schon oberkritisch!

>  
> [mm]\gdw[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{(a,b,c)| a [mm]\in[/mm] A, a [mm]\not\in[/mm]  B, a [mm]\not\in[/mm] C,  b [mm]\in[/mm]

> B, c [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

C}

>  
> Jetzt wird die rechte und linke Seite gleichgesetzt;:
>  
> (A \  B) x (a \ C) = A x A \ B x C
>  
> [mm]\gdw[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{a [mm]\in[/mm] A, a [mm]\not\in[/mm] B, a [mm]\not\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

C} = {(a,b,c)| a [mm]\in[/mm]

> A, a [mm]\not\in[/mm]  B, a [mm]\not\in[/mm] C,  b [mm]\in[/mm] B, c [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

C}

>  
> Es gilt {a [mm]\in[/mm] A, a [mm]\not\in[/mm] B, a [mm]\not\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

C} [mm]\not=[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{(a,b,c)|

> a [mm]\in[/mm] A, a [mm]\not\in[/mm]  B, a [mm]\not\in[/mm] C,  b [mm]\in[/mm] B, c [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

C}

>  
> Was haltet ihr davon?

Goar nix!

Gib ein Gegenbsp. an, wenn du meinst, dass die Aussage falsch ist ...

>  
> mfg und besten Dank für eure Hilfe,
>  
> zjay
>  

Gruß

schachuzipus


Bezug
                
Bezug
Aussagen über Menge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:08 Mi 21.11.2012
Autor: zjay


Bezug
                        
Bezug
Aussagen über Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:21 Mi 21.11.2012
Autor: zjay

Nun arbeite stur mit den Definitionen:

[mm](x,y)\in A\times (B\cap C) \ \gdw \ x\in A \ \wedge \ y\in (B\cap C) \ \gdw \ x\in A \ \wedge \ y\in B \ \wedge \ y\in C[/mm]

[mm]\gdw (x\in A\wedge y\in B) \ \wedge \ (x\in A\wedge y\in C)[/mm]

Wieso kann ich das machen?

Die Schritte sind bis zum letzten absolut klar und einleuchtend. Nur beim letzten muss ich stutzen. Ich kann mir nur denken, dass diese drei Aussagen im 3. Umformungsschritt mit einem logischen [mm] \wedge [/mm] verknüpft sind und man deswegen jede Aussage beliebig oft aufschreiben darf. Deswegen steht x [mm] \in [/mm] A auch zweimal im letzten Umformungsschritt.

[mm] \gdw (x,y)\in A\times [/mm] B \ [mm] \wedge [/mm] \ [mm] (x,y)\in A\times [/mm] C[/mm]

[mm] \gdw (x,y)\in (A\times B)\cap (A\times [/mm] C)

Da (x,y) [mm] \in [/mm] A x B und (x,y) [mm] \in [/mm] A x C gilt, kann man beide kartesischen Produkte vereinigen, so dass (x,y) [mm] \in [/mm] A x B [mm] \cap [/mm] A x C

Begründe dabei jeden der Schritte!

wow, da hab ich vor lauter rot ja kaum etwas anderes gesehen ...

Okay, das gegenbeispiel um Aussage b) zu widerlegen:

(A \ B) x (A \ C) = A x A \ B x C

Sei A = { 1,2 }, B = {1} und C = {}

[mm] \rightarrow [/mm] ( A \ B ) x ( A \ C ) = { (1,1), (1,2)}

A x A \ B x C = { (1,1), (1,2), (2,1), (2,2) \ [mm] \emptyset \} [/mm] = {(1,1), (1,2), (2,1), (2,2)}
[mm] \not= [/mm] (A \ B) x (A \ C)



Stimmen meine vermutung und mein Gegenbeispiel denn?

mfg,

zjay

Bezug
                                
Bezug
Aussagen über Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Mi 21.11.2012
Autor: angela.h.b.


> Nun arbeite stur mit den Definitionen:
>
> [mm](x,y)\in A\times (B\cap C) \ \gdw \ x\in A \ \wedge \ y\in (B\cap C) \ \gdw \ x\in A \ \wedge \ y\in B \ \wedge \ y\in C[/mm]
>
> [mm]\gdw (x\in A\wedge y\in B) \ \wedge \ (x\in A\wedge y\in C)[/mm]
>
> Wieso kann ich das machen?
>
> Die Schritte sind bis zum letzten absolut klar und
> einleuchtend. Nur beim letzten muss ich stutzen. [blue">Ich kann
> mir nur denken, dass diese drei Aussagen im 3.
> Umformungsschritt mit einem logischen [mm]\wedge[/mm] verknüpft
> sind und man deswegen jede Aussage beliebig oft
> aufschreiben darf. Deswegen steht x [mm]\in[/mm] A auch zweimal im
> letzten Umformungsschritt.

Hallo,

ja, genau.

>
> [mm]\gdw (x,y)\in A\times[/mm] B \ [mm]\wedge[/mm] \ [mm](x,y)\in A\times[/mm] C[/mm]
>
> [mm]\gdw (x,y)\in (A\times B)\cap (A\times[/mm] C)
>
> Da (x,y) [mm]\in[/mm] A x B und (x,y) [mm]\in[/mm] A x C gilt,

liegt (x,y) nach Def. des Schnittes zweier Mengen im Schnitt der beiden Mengen [mm] A\times [/mm] B und [mm] A\times [/mm] C.


<span class=" math" ="][="" blue]<br="">

> Okay, das gegenbeispiel um Aussage b) zu widerlegen:
>
> (A \ B) x (A \ C) = A x A \ B x C

>
> Sei A = { 1,2 }, B = {1} und C = {}
>

Dann ist

> [mm]\rightarrow[/mm] ( A \ B ) x ( A \ C )

[mm] =\{2\}\times\{1,2,\} [/mm]

> = { (1,1), (1,2)}

Irgendwie nicht...



>
> A x A \ B x C = { (1,1), (1,2), (2,1), (2,2)} \ [mm]\emptyset [/mm]
> = {(1,1), (1,2), (2,1), (2,2)}
> [mm]\not=[/mm] (A \ B) x (A \ C)
>
>  
>
> Stimmen meine vermutung und mein Gegenbeispiel denn?

Deine Vermutung stimmt.

LG Angela

>  
> mfg,
>
> zjay

</span>

Bezug
                                        
Bezug
Aussagen über Menge: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:50 Mi 21.11.2012
Autor: zjay

Ups, das war auch ein blödes Beispiel.

Hier ein neues:

A:={1,2}, B:={1,3}, C:={2,3}

(A \ B) x (A \ C) = A x A \ B x C

(2) x (1) = (1,2) x (1,2) \ (1,3) x (2,3)

Die Frage hat sich schon erledigt, danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]