matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPrädikatenlogikAussagen symbolisieren,R
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Prädikatenlogik" - Aussagen symbolisieren,R
Aussagen symbolisieren,R < Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagen symbolisieren,R: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:23 Mi 20.04.2016
Autor: sissile

Aufgabe
Sei p eine einstellige Funktion über [mm] \mathbb{R} [/mm] und [mm] \Delta [/mm] die zweistelliges Abstandsfunktion über [mm] \mathbb{R}, [/mm] d.h. [mm] \Delta(r_1,r_2)=|r_1-r_2| [/mm] für [mm] r_1, r_2 \in \mathbb{R}. [/mm] Betrachte die Sprache
[mm] L=\{+,\cdot,0,1,<,f,d\} [/mm]
wobei f ein einstelliges und d ein zweistelliges Symbol ist. Sei
[mm] \mathcal{A}= [/mm] ( [mm] \mathbb{R}, +^{\mathcal{A}},\cdot^{\mathcal{A}}, 0^{\mathcal{A}},1^{\mathcal{A}},<^{\mathcal{A}},f^{\mathcal{A}},d^{\mathcal{A}}) [/mm]
eine L-Struktur, wobei [mm] +^{\mathcal{A}},\cdot^{\mathcal{A}}, 0^{\mathcal{A}},1^{\mathcal{A}},<^{\mathcal{A}} [/mm] die üblichen Obekte auf [mm] \mathb{R} [/mm] sind, [mm] f^{\mathcal{A}}:=p [/mm] und [mm] d^{\mathcal{A}}:= \Delta. [/mm] Man symbolisiere mit L die folgenden Aussagen:
1) Jede positive reelle Zahl besitzt eine positive Quadratwurzel
2) Wenn p streng monoton ist, dann ist p injektiv.
3) p ist auf [mm] \mathbb{R} [/mm] stetig
4) p ist auf [mm] \mathbb{R} [/mm] gleichmäßig stetig.

Hallo zusammen,
1) [mm] \forall [/mm] x [mm] \exist [/mm] y (<0x [mm] \rightarrow (\cdot [/mm] y y [mm] \doteq [/mm] x [mm] \wedge [/mm] <0y))
2) [mm] (\forall [/mm] x [mm] \forall [/mm] y <Px Py [mm] \rightarrow \forall [/mm] x [mm] \forall [/mm] y ( [mm] \neg [/mm] x [mm] \doteq [/mm] y [mm] \rightarrow \neg [/mm] Px [mm] \doteq [/mm] Py))
3) [mm] \forall [/mm] x [mm] \forall \epsilon \exists \delta \forall [/mm] y ( < 0 [mm] \delta \wedge (<0\epsilon \rightarrow( [/mm] < [mm] \Delta [/mm] xy [mm] \delta \rightarrow \Delta [/mm] Px Py [mm] \epsilon))) [/mm]
4)  [mm] \forall [/mm] x  [mm] \forall [/mm] y [mm] \forall \epsilon \exists \delta [/mm] ( < 0 [mm] \delta \wedge (<0\epsilon \rightarrow( [/mm] < [mm] \Delta [/mm] xy [mm] \delta \rightarrow \Delta [/mm] Px Py [mm] \epsilon))) [/mm]

Frage: Ich bin mir unsicher wann die Quantoren drankommen und wann die Eigenschaft dieser drankommt. Ich hab die Quantoren immer am Anfang gesetzt bin aber unsicher ob es ein Unterschied mach wenn ich die erst setze wenn sie vorkommen?
z.B.: bei 3) das y:
[mm] \forall [/mm] x [mm] \forall \epsilon \exists \delta [/mm]  ( < 0 [mm] \delta \wedge (<0\epsilon \rightarrow( \forall [/mm] y< [mm] \Delta [/mm] xy [mm] \delta \rightarrow \Delta [/mm] Px Py [mm] \epsilon))) [/mm]

LG,
sissi


        
Bezug
Aussagen symbolisieren,R: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Mo 25.04.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Aussagen symbolisieren,R: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:00 Di 26.04.2016
Autor: sissile

Hallo zusammen ;)
Vlt findet sich ja noch wer der kurz drüberschauen könnte? Ich denke dass Thema ist nicht so schwer, jedoch scheint es nur wenig Logik-Interessierte zu geben.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]