matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAussagenlogikAussagen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Aussagenlogik" - Aussagen
Aussagen < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagen: Frage zu Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:07 Di 16.10.2012
Autor: Peeter123

Aufgabe
Per Verfassung gelten für die Gesetzesgebung folgende Regeln:
Ein Gesetz wird verabschiedet, wenn

a) das Bundesparlament und die Dörferkammer einverstanden sind oder
b) der Präsident und das Bundesparlament einverstanden sind.

Stellen Sie die bei der Verabschiedung von Gesetzen eine Rolle spielenden Aussagen zusammen und benennen Sie diese mit Buchstaben.
Geben Sie mit den von Ihnen gewählten Bezeichnungen eine Aussage an, die äquivalent zur Aussage "das Gesetz wird verabschiedet" ist.
Stellen Sie dazu eine Wahrheitstafel auf.

Hallo,

Ich wollte nur mal nachfragen, ob mein Lösungsansatz richtig ist.

A: Das Bundesparlament ist einverstanden.
B: Die Dörferkammer ist einverstanden.
C: Der Präsident ist einverstanden.
D: Das Gesetz wird verabschiedet.

D [mm] \gdw [/mm] (A [mm] \wedge [/mm] B) [mm] \vee [/mm] (A [mm] \wedge [/mm] C)


Die Spaltenköpfe der Wahrheitstabelle (Komplette Tabelle jetzt hier reinzuschreiben spare ich mir):

A   |   B   |   C   |   (A [mm] \wedge [/mm] B) [mm] \vee [/mm] (A [mm] \wedge [/mm] C)



Ist das soweit richtig?

Die oben stehende Aufgabe ist exakt so abgetippt. Meiner Meinung nach sind die Aussagen dort in der Aufgabenstellung unpräzise aufgeschrieben, da man einerseits meine Lösung deuten könnte, andererseits könnte man aber auch eine Implikationen deuten.





Meine "Alternativ-Lösung" wäre folgende:

A: Ein Gesetz wird verabschiedet, wenn das Bundesparlament und die Dörferkammer einverstanden sind oder der Präsident und das Bundesparlament einverstanden sind.

Diese Aussage dann aufteilen:

B: Ein Gesetz wird verabschiedet.
C: das Bundesparlament und die Dörferkammer sind einverstanden
D: der Präsident und das Bundesparlament sind einverstanden.

Und dann entsprechend weiter machen.




Welche Lösung ist nun richtig?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Aussagen: Logik und Deutsch
Status: (Antwort) fertig Status 
Datum: 23:43 Di 16.10.2012
Autor: Helbig

Hallo Peeter123,


> Per Verfassung gelten für die Gesetzesgebung folgende
> Regeln:
>  Ein Gesetz wird verabschiedet, wenn
>  
> a) das Bundesparlament und die Dörferkammer einverstanden
> sind oder
>  b) der Präsident und das Bundesparlament einverstanden
> sind.
>  
> Stellen Sie die bei der Verabschiedung von Gesetzen eine
> Rolle spielenden Aussagen zusammen und benennen Sie diese
> mit Buchstaben.
>  Geben Sie mit den von Ihnen gewählten Bezeichnungen eine
> Aussage an, die äquivalent zur Aussage "das Gesetz wird
> verabschiedet" ist.
>  Stellen Sie dazu eine Wahrheitstafel auf.
>  Hallo,
>  
> Ich wollte nur mal nachfragen, ob mein Lösungsansatz
> richtig ist.
>  
> A: Das Bundesparlament ist einverstanden.
>  B: Die Dörferkammer ist einverstanden.
>  C: Der Präsident ist einverstanden.
>  D: Das Gesetz wird verabschiedet.
>  
> D [mm]\gdw[/mm] (A [mm]\wedge[/mm] B) [mm]\vee[/mm] (A [mm]\wedge[/mm] C)
>  
>
> Die Spaltenköpfe der Wahrheitstabelle (Komplette Tabelle
> jetzt hier reinzuschreiben spare ich mir):
>  
> A   |   B   |   C   |   (A [mm]\wedge[/mm] B) [mm]\vee[/mm] (A [mm]\wedge[/mm] C)
>  
>
>
> Ist das soweit richtig?

Ja!

>  
> Die oben stehende Aufgabe ist exakt so abgetippt. Meiner
> Meinung nach sind die Aussagen dort in der Aufgabenstellung
> unpräzise aufgeschrieben, da man einerseits meine Lösung
> deuten könnte, andererseits könnte man aber auch eine
> Implikationen deuten.
>  
>
>
>
>
> Meine "Alternativ-Lösung" wäre folgende:
>  
> A: Ein Gesetz wird verabschiedet, wenn das Bundesparlament
> und die Dörferkammer einverstanden sind oder der
> Präsident und das Bundesparlament einverstanden sind.
>  
> Diese Aussage dann aufteilen:
>  
> B: Ein Gesetz wird verabschiedet.
>  C: das Bundesparlament und die Dörferkammer sind
> einverstanden
>  D: der Präsident und das Bundesparlament sind
> einverstanden.
>  
> Und dann entsprechend weiter machen.
>  
>
>
>
> Welche Lösung ist nun richtig?

Deine Alternative faßt unzulässigerweise je zwei Aussagen zu einer zusammen. Ich denke mal, daß der Aufgabensteller dies so nicht akzeptiert.

In beiden Lösungen wird das äußere "wenn" zu einem "genau dann, wenn". Dies ist im Deutschen und erstaunlicherweise sogar in der Mathematik bei Begriffsdefinitionen (nicht bei Sätzen!) üblich. Es bleibt oft dem Leser überlassen, das Ganze als Implikation oder als Äquivalenz aufzufassen. Beispiel:

Definition:
Eine Menge heißt kompakt, wenn sie abgeschlossen und beschränkt ist. ("wenn" statt "genau dann wenn")

Satz:
Eine Menge ist genau dann kompakt, wenn jede Teilfolge ...

Grüße,
Wolfgang

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]