matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeAussagelogische Formel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Gleichungssysteme" - Aussagelogische Formel
Aussagelogische Formel < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagelogische Formel: Hilfestellung
Status: (Frage) beantwortet Status 
Datum: 16:32 Mi 28.09.2011
Autor: spiike

Aufgabe
Bringen Sie die folgende aussagenlogische Formel auf möglichst einfache Gestalt:

( (B → ¬A) → C)  ˄ ( (B ˅ C) → (¬A ˄ B) )
≡ ( ¬(B → ¬A) ˅ C)  ˄ ( ¬(B ˅ C) ˅ (¬A ˄ B) )
≡ ( ¬(¬B ˅ ¬A) ˅ C)  ˄ ( ¬(B ˅ C) ˅ (¬A ˄ B) )
≡ ( C ˅ B ˄ A)  ˄ ( (¬B ˄ ¬C) ˅ (¬A ˄ B) )
≡ ( C ˅ B ) ˄ ( C ˅ A) ˄  (  (¬B ˄ ¬C) ˅ (¬A ˄ B) )
≡ ( C ˅ B ) ˄ ( C ˅ A) ˄ (¬B ˅ ¬A ) ˄ (¬B ˅ B) ˄ (¬C ˅ ¬A) ˄ ( ¬C ˅ B )
≡ ( C ˅ B ) ˄ ( C ˅ A) ˄ (¬B ˅ ¬A ) ˄ (¬C ˅ ¬A) ˄ ( ¬C ˅ B )

Ich weiß nicht ob ich richtig liege mit den äquivalenten Aussagen, aber ich komme in der letzten Zeile nicht weiter.

Kann mir wer weiterhelfe was ich jetzt machen soll?

Gruß Paul

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Aussagelogische Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 10:48 Do 29.09.2011
Autor: Hasenfuss

Hossa :)

Ich finde diese Schreibweise grausam, daher verwende ich

Addition für "oder"
Multiplikation für "und"
[mm] $\overline [/mm] a$ für "nicht"
[mm] $\Rightarrow$ [/mm] für "impliziert"

Damit lautet deine Aufgabe:

$( [mm] (B\Rightarrow\overline [/mm] A) [mm] \Rightarrow [/mm] C) ( (B + [mm] C)\Rightarrow (\overline [/mm] AB) ) $

Die Implikation ist immer wahr, außer für den Fall, dass man aus etwas Wahrem nichts Falsches folgern kann. Daher gilt die Beziehung:

[mm] $A\Rightarrow B=\overline [/mm] A+B$

Damit kannst du deine Aufgabe umschreiben:

$( [mm] \underbrace{(\underbrace{B\Rightarrow\overline A}_{=\overline B+\overline A}) \Rightarrow C}_{\overline{\overline B+\overline A}+C}) [/mm] ( [mm] \underbrace{(B + C)\Rightarrow (\overline AB)}_{=\overline{B+C}+\overline AB} [/mm] ) $

Mit Hilfe der Regeln von de Morgan:

[mm] $\overline{a+b}=\overline a\,\overline [/mm] b$
[mm] $\overline{a\,b}=\overline a+\overline [/mm] b$

kann man weiter vereinfachen:

[mm] $\overline{\overline A+\overline B}=\overline{\overline A}\,\overline{\overline B}=AB$ [/mm]

[mm] $\overline{B+C}=\overline B\,\overline [/mm] C$

Jetzt wird alles zusammen gebaut:

[mm] $(AB+C)(\overline B\,\overline C+\overline AB)=AB\overline B\,\overline C+C\overline B\,\overline C+AB\overline AB+C\overline AB=\overline [/mm] ABC$

Viele Grüße

Hasenfuß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]