matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisAussage einer Ungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Aussage einer Ungleichung
Aussage einer Ungleichung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussage einer Ungleichung: Frage
Status: (Frage) beantwortet Status 
Datum: 15:38 Mi 08.06.2005
Autor: Beliar

Was sagt die Funktion y = -1/(2-1/3x) bei der Ungleichung: -1/(2-1/3x)> 3  aus?    G=Q

        
Bezug
Aussage einer Ungleichung: komische Formulierung
Status: (Antwort) fertig Status 
Datum: 16:02 Mi 08.06.2005
Autor: Bastiane

Hallo!
Wie wär's mal mit ner netten Anrede, ner vernünftigen Fragestellung, vor allem eigenen Ansätzen und einem Schlusswort?
Mmh...

> Was sagt die Funktion y = -1/(2-1/3x) bei der Ungleichung:
> -1/(2-1/3x)> 3  aus?    G=Q  

Was gibt es denn für Möglichkeiten? Die Formulierung ist mir nicht so wirklich geläufig...
Ich würde einfach mal nach x umformen, sodass da nachher steht x>... oder x<..., und das ist dann meiner Meinung nach die Aussage.

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
Aussage einer Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:15 Mi 08.06.2005
Autor: Marc

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Beliar,

> Was sagt die Funktion y = -1/(2-1/3x) bei der Ungleichung:
> -1/(2-1/3x)> 3  aus?    G=Q  

Ich habe diese Funktion mal geplottet:

$\red{f:\ y=-\bruch{1}{2-\bruch{1}{3}x}$
$\green{g:\ y=3}$
$\blue{x=6}$ (Polstelle)

[Dateianhang nicht öffentlich]

Nun sind diejenigen x gesucht, für die $(x,f(x))$ oberhalb von $(x,g(x))$ liegt.
Das ist nun nicht mehr schwierig zu erkennen...

Viele Grüße,
Marc

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]