matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenAusmultiplizieren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Ganzrationale Funktionen" - Ausmultiplizieren
Ausmultiplizieren < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ausmultiplizieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 So 07.03.2010
Autor: miss_alenka

Hallo ihr Lieben!

habe ein kleines problem..

[mm] f(x)=(x+2(x-1)^2 [/mm] , daraus solle ich die normale gleichung bilden, aber wie? ausmultiplizieren geht da doch nicht oder??

das könnte man ja bei dieser hier machen f(x)=(x-1)(x+2)(x-3), aber da bin ich mir auch unsicher, weil da sogar 3 klammer sind..aaahhhhh...

hoffe jemand kann  mir helfen!!
lg alena

        
Bezug
Ausmultiplizieren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:03 So 07.03.2010
Autor: steppenhahn

Hallo!

  

> [mm]f(x)=(x+2(x-1)^2[/mm] , daraus solle ich die normale gleichung
> bilden, aber wie? ausmultiplizieren geht da doch nicht
> oder??

Du meinst doch: $f(x) = [mm] (x+1)*(x-1)^{2}$, [/mm] oder?
  

> das könnte man ja bei dieser hier machen
> f(x)=(x-1)(x+2)(x-3), aber da bin ich mir auch unsicher,
> weil da sogar 3 klammer sind..aaahhhhh...

Wir machen das jetzt mal nacheinander:

$f(x) = [mm] (x+1)*(x-1)^{2} [/mm] = (x+1)*(x-1)*(x-1)$

Mit Hilfe der zweiten binomischen Formel können wir die beiden letzten Klammern zusammenfassen:

$= [mm] (\red{x+1})*(x^2-2x+1)$ [/mm]

Nun kannst du das Distributivgesetz anwenden:

[mm] $=\red{x}*(x^2-2x+1) +\red{1}*(x^2-2x+1)$ [/mm]

Okay?

--------

Bei dem zweiten geht das genauso:

$f(x)=(x-1)*(x+2)*(x-3)$

Wir berechnen zunächst [mm] $(\red{x-1})*(x+2) [/mm] = [mm] \red{x}*(x+2) [/mm] + [mm] \red{(- 1)}*(x+2) [/mm] = [mm] x^2+2x-x-2=x^2+x-2$: [/mm]

$= [mm] (x^2+x-2)*(x-3)$ [/mm]

Nun wieder das Distributivgesetz:

$= [mm] (x^2+x-2)*\red{x} [/mm] + [mm] (x^2+x-2)*\red{(-3)} [/mm]

Nun kannst du weiter ausklammern!

Grüße,
Stefan

Bezug
                
Bezug
Ausmultiplizieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 So 07.03.2010
Autor: miss_alenka

hmm also bei dem esten sollte f(x)= [mm] (x+2)*(x-1)^2 [/mm] gemeint sein sorry!


und das zweite ist wohl falsch was ich gemacht habe..

aber erstmal eine frage, verstehe nicht wie du bei [mm] x^2+2x-x-2 [/mm] auf [mm] x^2+x-2 [/mm] kommst:S wenn man es zusammenfasst, kommt doch [mm] x^2-x-2 [/mm] hin, wegen 2x-x?
nunja hab trotzdem weitergerechnet, komme trotzdem nicht weiter. hab also jetzt [mm] ((x^2+x-2)*x [/mm] gerechnet = [mm] x^3+x^2-2x [/mm]
dann [mm] (x^2+x-2)*(-3) [/mm]               = [mm] -3x^2-3x+6 [/mm]

so und jetzt? beides zusammenführen und zusammenfassen?
dann würde bei mir [mm] x^5-5x^2-3x^2+6 [/mm] rauskommen, aber das ist wohl falsch

mannooo..:(



Bezug
                        
Bezug
Ausmultiplizieren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 So 07.03.2010
Autor: steppenhahn


> und das zweite ist wohl falsch was ich gemacht habe..
>  
> aber erstmal eine frage, verstehe nicht wie du bei
> [mm]x^2+2x-x-2[/mm] auf [mm]x^2+x-2[/mm] kommst:S wenn man es zusammenfasst,
> kommt doch [mm]x^2-x-2[/mm] hin, wegen 2x-x?

Nein, es kommt das raus, was ich geschrieben habe.
Es ist doch:

$2x-x = 2*x - 1*x = (2-1)*x = 1*x = x$

(mal ganz ausführlich aufgeschrieben). Es sollte aber intuitiv klar sein, dass 2 Äpfel minus 1 Apfel = 1 Apfel ist.

>  nunja hab trotzdem weitergerechnet, komme trotzdem nicht
> weiter. hab also jetzt [mm]((x^2+x-2)*x[/mm] gerechnet = [mm]x^3+x^2-2x[/mm]
> dann [mm](x^2+x-2)*(-3)[/mm]               = [mm]-3x^2-3x+6[/mm]

Das ist richtig.

> so und jetzt? beides zusammenführen und zusammenfassen?
>  dann würde bei mir [mm]x^5-5x^2-3x^2+6[/mm] rauskommen, aber das
> ist wohl falsch

Genau. Ich weiß auch beim besten Willen nicht, was du da gerechnet hast.
In meinem ersten Post stand doch:

$ [mm] f(x)=(x-1)\cdot{}(x+2)\cdot{}(x-3) [/mm] $

$ = [mm] (x^2+x-2)\cdot{}(x-3) [/mm] $

$= [mm] (x^2+x-2)*\red{x} [/mm] + [mm] (x^2+x-2)*\red{(-3)}$ [/mm]

Und nun hast du die beiden Teil ausgerechnet:

$= [mm] x^{3}+x^{2}-2*x [/mm] - [mm] 3*x^{2}-3*x+6$ [/mm]

Nun musst du nur noch zusammenfassen und bist fertig.
Bedenke: a*x+b*x = (a+b)*x !!

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]