matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAusartungsraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Ausartungsraum
Ausartungsraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ausartungsraum: Wie bestimme ich einen Ausart
Status: (Frage) beantwortet Status 
Datum: 16:22 Di 01.11.2005
Autor: geckolux

Hy allerseits, wie gehts?

ich habe bei folgender Aufgabe sehr große PRobleme da ich nicht weiß wie ich die differenzierbarkeit in a) behandeln soll und nicht verstehe wie ich einen Ausartungsraum bestimme, hoffe ihr könt wieder mal so toll helfen
Sei
D := D(]-1,1[) := {f: ]-1,1[ -> [mm] \IR \parallel [/mm] f differenzierbar}.
Zeigen Sie:
- D ist ein [mm] \IR [/mm] - Vektorraum.
- d : D x D -> [mm] \IR [/mm] , (f,g) [mm] \mapsto [/mm] (fg)´(0) ist eine symmetrische Bilinearform. Bestimmen Sie den Ausartungsraum [mm] D_0 [/mm] von d.

Ich habe ausserdem PRobleme Vektorräume zu beweisen wenn es sich bei der Menge um eine Menge von Funktionen handelt :(
hoffe ihr könnt mir helfen,...
mfg

gecko

        
Bezug
Ausartungsraum: Vektorräume
Status: (Antwort) fertig Status 
Datum: 22:10 Di 01.11.2005
Autor: Gnometech

Grüße!

Naja, die Vektorraumstruktur des Funktionenraumes ist ja klar... sind $f$ und $g$ Funktionen nach [mm] $\IR$, [/mm] dann ist auch $f + g$ eine Funktion, indem man einfach definiert $(f+g)(x) = f(x) + g(x)$.

Und Skalarmultiplikation ist ebenso definiert. Das ist auch hier nicht das Problem, vielmehr geht es um Folgendes:

Wenn $f,g [mm] \in [/mm] D$ und [mm] $\lambda \in \IR$ [/mm] gegeben sind, wieso gilt dann $f + g [mm] \in [/mm] D$ und [mm] $\lambda [/mm] f [mm] \in [/mm] D$? Du musst Dir also überlegen, dass die Summe zweier differenzierbarer Funktionen wieder differenzierbar ist. Und dass für differenzierbares $f$ auch die Funktion [mm] $\lambda [/mm] f$ differenzierbar ist.

Für den zweiten Teil: Symmetrie sollte klar sein. :-) Dann reicht es zu zeigen, dass $d(f + g, h) = d(f,h) + d(g,h)$ und ebenso [mm] $d(\lambda [/mm] f, g) = [mm] \lambda [/mm] d(f,g)$ gilt. Das ist schlicht nachzurechnen.

Und für den Ausartungsraum... das hängt von eurer Definition dafür ab, aber das sollte mit den Dingen oben auch nicht so schwer sein.

Viel Erfolg!

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]