matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenAus MiPo, HP Matrix best.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Aus MiPo, HP Matrix best.
Aus MiPo, HP Matrix best. < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aus MiPo, HP Matrix best.: Erklärung
Status: (Frage) beantwortet Status 
Datum: 16:41 Sa 09.08.2014
Autor: Count123

Aufgabe
Bestimme eine Matrix [mm] Q^{5 \times 5}, [/mm] Q rat. Zahlen

Minimalpolynom: [mm] (x^{2}+1)(x-1)(x-2) [/mm]
char Polynom: [mm] (x^{2}+1)(x-1)(x-2)^{2} [/mm]

Welche Dimension hat der Eigenraum zum EW 2.

Hallo :)

Kann mir jemand sagen, wie man leicht auf diese Matrix kommt. Gibt es da irgendwelche Tricks. Ich bin in LAI und wir hatten noch nicht so viel..aber das soll irgendwie leicht gehen.
Ich hoffe, dass mir da jemand helfen kann.

Die Dimension müsste doch 2 sein, wegen char poly. bzw. der algebraischen Vielfachheit der Nullstelle 2 oder?

Danke sehr :)

        
Bezug
Aus MiPo, HP Matrix best.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Sa 09.08.2014
Autor: hippias


> Bestimme eine Matrix [mm]Q^{5 \times 5},[/mm] Q rat. Zahlen
>  
> Minimalpolynom: [mm](x^{2}+1)(x-1)(x-2)[/mm]
> char Polynom: [mm](x^{2}+1)(x-1)(x-2)^{2}[/mm]
>  
> Welche Dimension hat der Eigenraum zum EW 2.
>  Hallo :)
>  
> Kann mir jemand sagen, wie man leicht auf diese Matrix
> kommt. Gibt es da irgendwelche Tricks. Ich bin in LAI und
> wir hatten noch nicht so viel..aber das soll irgendwie
> leicht gehen.
>  Ich hoffe, dass mir da jemand helfen kann.

Was weisst Du denn? Kannst Du zu einer gegebenen Matrix das charakteristische Polynom berechnen? Hast Du gar keine Vermutung wie die Matrix aussehen koennte? Die Matrix ist uebrigens nicht eindeutig bestimmt, sodass Du in gewisser Weise viele Freiheiten hast.

>  
> Die Dimension müsste doch 2 sein,

Ja.

> wegen char poly. bzw.
> der algebraischen Vielfachheit der Nullstelle 2 oder?

Dieser "Satz" ist ja wohl nicht zu verstehen.

>  
> Danke sehr :)


Bezug
                
Bezug
Aus MiPo, HP Matrix best.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:02 Sa 09.08.2014
Autor: Count123

Die Begriffe kenne ich natürlich..also char. Polynom und Minimalpolynom. beides kann ich ausrechnen.

Also anhand des char. Polynoms sieht man, dass i, -i, 1 und 2 (zweifach!) Eigenwerte sind. Da man aber keine komplexe Matrix, sondern eine Matrix über den rationalen Zahlen braucht, muss es einen 2  [mm] \times [/mm] 2 Block geben.
Meine Matrix sähe damit wie folgt aus:

[mm] \pmat{0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2} [/mm]

Aber das stimmt leider nicht :( die Polynome passen dann nicht..

Danke nochmal für Hilfe.

Bezug
                        
Bezug
Aus MiPo, HP Matrix best.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:09 Sa 09.08.2014
Autor: hippias

Ich finde das sieht gut aus. Rechne doch einmal vor, wie das charakteristische und Minimal- Polynom dieser Matrix lautet. Oder woher weisst Du, dass diese Matrix keine richtige Loesung ist?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]