matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKomplexität & BerechenbarkeitAufwand von Algorithmus
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Komplexität & Berechenbarkeit" - Aufwand von Algorithmus
Aufwand von Algorithmus < Komplex. & Berechnb. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufwand von Algorithmus: Frage zu kleiner Aufabe
Status: (Frage) beantwortet Status 
Datum: 13:35 So 09.09.2012
Autor: Jack159

Aufgabe
Gegeben sei ein Algorithmus A, dessen Aufwand p(n) ist, wobei p ein Polynom vom Grad k ist. Zeigen Sie, dass A den Aufwand [mm] O(n^k) [/mm] besitzt.
Hinweis: Falls nötig, Beispiele ausprobieren.

Hallo,

Wir haben folgendes in der Vorlesung definiert:

(Mit O(...) ist das Laundau-Symbol gemeint)
Def.: Man sagt eine Folge [mm] (x_n) [/mm] ist O(f(n)): [mm] \gdw |x_n|\lec*f(n) [/mm] für schließlich alle n für eine konstante c.

Meine Lösung:

p ist also ein Polynom vom Grad k. Also wird p in etwa die folgende Gestalt haben:

[mm] p(x)=ax^k+bx^{k-1}+cx^{k-2}.... [/mm]

Uns intressiert hier nur [mm] ax^k. [/mm] Dies nun als Folge geschrieben:

[mm] x_n=a*n^k [/mm]

Damit gilt doch:

[mm] |x_n| \le c*n^k \gdw a*n^k \le c*n^k [/mm]   für schließlich alle n mit c [mm] \ge [/mm] a

Also gilt:
[mm] x_n=a*n^k [/mm] ist [mm] O(n^k) [/mm]



Ist meine Lösung richtig?


        
Bezug
Aufwand von Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 00:40 Mi 12.09.2012
Autor: Marcel

Hallo Jack,

> Gegeben sei ein Algorithmus A, dessen Aufwand p(n) ist,
> wobei p ein Polynom vom Grad k ist. Zeigen Sie, dass A den
> Aufwand [mm]O(n^k)[/mm] besitzt.
>  Hinweis: Falls nötig, Beispiele ausprobieren.
>  Hallo,
>  
> Wir haben folgendes in der Vorlesung definiert:
>  
> (Mit O(...) ist das Laundau-Symbol gemeint)
>  Def.: Man sagt eine Folge [mm](x_n)[/mm] ist O(f(n)): [mm]\gdw |x_n|\le c*f(n)[/mm]

Du hattest dort ein Leerzeichen vergessen, deswegen sieht man
bei Dir nicht, was Du meinst!

> für schließlich alle n für eine konstante c.
>  
> Meine Lösung:
>  
> p ist also ein Polynom vom Grad k. Also wird p in etwa die
> folgende Gestalt haben:
>
> [mm]p(x)=ax^k+bx^{k-1}+cx^{k-2}....[/mm]
>  
> Uns intressiert hier nur [mm]ax^k.[/mm] Dies nun als Folge
> geschrieben:
>  
> [mm]x_n=a*n^k[/mm]
>  
> Damit gilt doch:
>  
> [mm]|x_n| \le c*n^k \gdw a*n^k \le c*n^k[/mm]   für schließlich
> alle n mit c [mm]\ge[/mm] a
>  
> Also gilt:
> [mm]x_n=a*n^k[/mm] ist [mm]O(n^k)[/mm]
>  
>
>
> Ist meine Lösung richtig?
>  

Nein, jedenfalls sehe ich das so, dass Du eigentlich das benutzt, was
Du zeigen sollst:

Nämlich dass für ein Polynom [mm] $p(x)=a_kx^k+a_{k-1}x^{k-1}+...+a_1x^1+a_0$ [/mm] gilt:

[mm] $$p(n)=O(n^k)\,.$$ [/mm]
(Ich weiß, unschöne, aber gängige Notation. Etwas besser
$$p(n) [mm] \in O(n^k)\,,$$ [/mm]
außerdem sollte da noch $n [mm] \to \infty$ [/mm] dabeistehen. Aber egal. Bei Dir
bzw. bei der Euch vorliegenden Definition ist übrigens [mm] $x_n=p(n)\,$ [/mm] für
alle [mm] $n\,$ [/mm] in der Aufgabe gemeint - das musst Du Dir erstmal klarmachen!)

Zu zeigen ist also:
Es gibt ein $c > [mm] 0\,,$ [/mm] so dass $p(n) [mm] \le c*n^k$ [/mm] für alle [mm] $n\,.$ [/mm] (Im Prinzip
bräuchte man auch nur alle [mm] $n\,$ [/mm] ab einem [mm] $n_0\,,$ [/mm] aber halten wir uns
an die von Dir zitierte Version).

(Das würde auch passen, wenn [mm] $p\,$ [/mm] einen Grad [mm] $\le [/mm] k$ hätte - bei
$> [mm] k\,$ [/mm] "wird die Aussage falsch"!)

Wie findet man sowas?

Nunja:
[mm] $$|p(n)|=\left|\sum_{m=0}^k a_m n^m\right| \le \sum_{m=0}^k |a_m| n^m \le (k+1)\underbrace{\max\{|a_0|,\;...,\;|a_k|\}}_{ \ge |a_k| > 0}\;\cdot n^k$$ [/mm]

Begründe diese Ungleichung für alle [mm] $n\,,$ [/mm] dann setze
[mm] $$c:=(k+1)\;\max\{|a_0|,\;...,\;|a_k|\}\,,$$ [/mm]
wobei der zweite Faktor wie oben angedeutet $> [mm] 0\,$ [/mm] ist, da [mm] $p\,$ [/mm] Grad
[mm] $k\,$ [/mm] hat!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]