matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGraphentheorieAufteilungsproblem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Graphentheorie" - Aufteilungsproblem
Aufteilungsproblem < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufteilungsproblem: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:14 Di 12.06.2007
Autor: schlomo

Aufgabe
Es sollen eine Anzahl von Menschen in zwei Räume aufgeteilt werden. Dabei sollen Freunde nicht im selben Raum sein. Die Freundesbeziehungen sind als Paare gegeben. Entwickle eine Algorithmus der festellt, ob dies möglich ist, wenn ja, ausgiebt wie.

Hat jemand einen Ansatz, wie man vorgehen könnte?

Ich habe überlegt alle Freundschaftspaar nacheinader durchzugehen und die Leute nach einer Überprüfung in den jeweils passenden Raum zu legen. Allerdings können hierbei am Anfang entscheidungen getroffen werden, die am Ende zu einem Problem werden.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Aufteilungsproblem: Tipp
Status: (Antwort) fertig Status 
Datum: 19:41 Di 12.06.2007
Autor: dormant

Hi!

Dieses Problem ist in der Graphentheorie als das Perfect Matching Problem bekannt. Das ist ein Standard-problem und in der Literatur gibt es einge Algorithmen dazu. Ach ja - das Problem ist NP-schwer.

Gruß,
dormant

Bezug
                
Bezug
Aufteilungsproblem: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:01 Di 12.06.2007
Autor: schlomo

Also ich habe mir gerade die Beschreibung vom Perfect Matching durchgelesen  und finde nicht das es auf meine Aufgabe zutrifft.

Also bei folgenden Freunschaften:

a,b;c,b;d,b;c,e;d,f;

könnte man folgende Aufteilung bilden die die Voraussetzung erfüllt, aber nicht perfekt paart.

Raum1(a,c,d);Raum2(b,e,f)

Sehe ich das falsch?


Bezug
                        
Bezug
Aufteilungsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 02:57 Mi 13.06.2007
Autor: dormant

Hi!

> Also bei folgenden Freunschaften:
>  
> a,b;c,b;d,b;c,e;d,f;
>  
> könnte man folgende Aufteilung bilden die die Voraussetzung
> erfüllt, aber nicht perfekt paart.
>  
> Raum1(a,c,d);Raum2(b,e,f)
>  
> Sehe ich das falsch?

  
Ja. Es gibt 5 Kanten (die hast du ja oben angegeben mit Anfangs- und Endknoten). Das Matching a, c, d (bzw. b, e, f) überdeckt alle 5 Kanten, d.h. alle Kanten in dem Graphen enthalten einen der Knoten a, c oder d und zwischen a, c und d sind paarweise mit keiner Knate verbunden => perfect matching.

Ein perfect matching hat immer eine gerade Anzahl an Knoten und die kann man in zwei Reihen aufstellen, s.d. zwei Knoten, die in einer Reihe sind, durch keine Kante verbunden sind (wie eben in deinem Beispiel - in der einen Reihe hast du a, c, d in der anderen b, e, f). Dabei ist aber jede Kante in dem Graphen von einem perfect matching überdeckt - sie fängt an, oder hört auf in einem Knotnen der einen Reihe (oder Raum, wie auch immer).

Gruß,
dormant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]