matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesAufteilen des Bruches
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - Aufteilen des Bruches
Aufteilen des Bruches < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufteilen des Bruches: Bruch aufteilen
Status: (Frage) beantwortet Status 
Datum: 01:30 Mi 25.08.2010
Autor: cmspablo

Aufgabe
[mm] -((m_{1}*c_{1})/(m_{2}*c_{2}))=(T_{k,1}-T_{k,0})/(T_{p,1}-T_{p,0})=(\Delta T_{k}/ \Delta T_{p}) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!

Ich habe echte Probleme die Gleichung nach [mm] (\Delta T_{k,1}/ \Delta T_{p,1}) [/mm] aufzulösen. Das Delta ist nur eine Differenz. Diese Rechnung ist Teil einer Aufgabe für die Berechnung der Austrittstemperaturen bei einem Wärmerohr...ich bleibe aber nur bei diesem Schritt stecken. Wie löst man jetzt diese Gleichung danach auf?

Vielen Dank für die Hilfe.

        
Bezug
Aufteilen des Bruches: Antwort
Status: (Antwort) fertig Status 
Datum: 09:43 Mi 25.08.2010
Autor: reverend

Hallo cmspablo,

dass eine Aufgabe zur Bruchrechnung so lange unbeantwortet bleibt, ist hier sehr ungewöhnlich. Bei mir lässt Deine Frage aber auch nur Ratlosigkeit zurück:

>
> [mm]-((m_{1}*c_{1})/(m_{2}*c_{2}))=(T_{k,1}-T_{k,0})/(T_{p,1}-T_{p,0})=(\Delta T_{k}/ \Delta T_{p})[/mm]
>  

  

> Ich habe echte Probleme die Gleichung nach [mm](\Delta T_{k,1}/ \Delta T_{p,1})[/mm]
> aufzulösen. Das Delta ist nur eine Differenz.

In der Gleichung tauchen weder [mm] \Delta T_{k,1} [/mm] noch [mm] \Delta T_{p,1} [/mm] auf. Man muss jetzt also als "Antworter" wissen oder raten, wie sie definiert sind. Wenn ich mal von den üblichen Gepflogenheiten bei der Bezeichnung von Formelgrößen ausgehe, nehme ich an, dass
[mm] \Delta T_{k,1}=T_{k,1}-T_{k,0} [/mm] und [mm] \Delta T_{p,1}=T_{p,1}-T_{p,0} [/mm] ist. Dann aber steht die Lösung doch schon in der Aufgabe und es gibt nichts mehr umzuformen.

Also ist vermutlich meine Annahme falsch. Du wirst nicht darum herumkommen, nachzureichen, wie die beiden [mm] \Delta{T} [/mm] denn nun tatsächlich definiert sind.

Grüße
reverend

> Diese
> Rechnung ist Teil einer Aufgabe für die Berechnung der
> Austrittstemperaturen bei einem Wärmerohr...ich bleibe
> aber nur bei diesem Schritt stecken. Wie löst man jetzt
> diese Gleichung danach auf?
>  
> Vielen Dank für die Hilfe.


Bezug
                
Bezug
Aufteilen des Bruches: Fehler in meiner Beschreibung
Status: (Frage) beantwortet Status 
Datum: 10:11 Mi 25.08.2010
Autor: cmspablo

Entschuldigung, ich habe einen Schreibfehler gemacht. Ich meine natürlich [mm] T_{p,1} [/mm] und [mm] T_{k,1}. [/mm] Das Delta hat da nichts zu suchen.

Also was ich suche ist [mm] T_{p,1}/T_{k,1}. [/mm] Wie komme ich jetzt da hin?

Bezug
                        
Bezug
Aufteilen des Bruches: Antwort
Status: (Antwort) fertig Status 
Datum: 10:25 Mi 25.08.2010
Autor: reverend

Hallo nochmal,

> Entschuldigung, ich habe einen Schreibfehler gemacht. Ich
> meine natürlich [mm]T_{p,1}[/mm] und [mm]T_{k,1}.[/mm] Das Delta hat da
> nichts zu suchen.

Ach so...

> Also was ich suche ist [mm]T_{p,1}/T_{k,1}.[/mm] Wie komme ich jetzt
> da hin?

Ich habe gerade wenig Lust, die ganzen Indices zu schreiben und nenne einfach mal alle Formelgrößen anders bzw. fasse zusammen.

Du hast eine Gleichung dieses Typs:

[mm] \bruch{a}{b}=\bruch{d-e}{f-g}, [/mm] gesucht ist nun [mm] \bruch{d}{f}. [/mm]

Das kannst Du nun lustig umformen, nur die gesuchte Größe ist nicht sortenrein zu ermitteln, will heißen: steht auf der einen Seite der Gleichung [mm] \tfrac{d}{f}, [/mm] dann steht immer mindestens eine der beiden Variablen d und f auch auf der anderen Seite.

Gibt es noch andere Angaben oder Beziehungen, die die Bestimmung beider Variablen (also [mm] T_{k,1} [/mm] und [mm] T_{p,1} [/mm] bei Dir) ermöglichen? Du bräuchtest dazu eine weitere Gleichung, in der nur diese beiden unbekannt sind.

Grüße
reverend

Bezug
                                
Bezug
Aufteilen des Bruches: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:50 Mi 25.08.2010
Autor: cmspablo

Hallo danke nochmal...ja eine Gleichung gibt es...aber leider taucht die nicht direkt in dieser Formel auf, aber vielleicht kann ich sie später irgendwie einbauen. Also: [mm] \Delta T_{m}=( \Delta T_{0}- \Delta T_{1})/( [/mm] ln ( [mm] \Delta T_{0}/ \Delta T_{1})) [/mm] Das wäre dann die Triebkraft.

Wie wäre es denn hier?

[mm] \Delta T_{1} [/mm] gelte für die [mm] T_{k,1} [/mm] und [mm] T_{p,1} [/mm]

Bezug
                                        
Bezug
Aufteilen des Bruches: Antwort
Status: (Antwort) fertig Status 
Datum: 11:06 Mi 25.08.2010
Autor: M.Rex

Hallo clamens und [willkommenmr]

Also nur nochmal zum Verständnis:

Du hast einerseits:
$ [mm] -\bruch{m_{1}c_{1}}{m_{2}c_{2}}=\bruch{T_{k,1}-T_{k,0}}{T_{p,1}-T_{p,0}} [/mm] $
Und andererseits:
$ [mm] T_{m}=\bruch{T_{0}-T_{1}}{\ln\left(\bruch{T_{0}}{T_{1}}\right)} [/mm] $

Entnehme ich das deinen Aufgaben richtig? Wenn nicht, wäre es hilfreich, die beiden richtigen Gleichungen mal mit dem Formeleditor zu verfassen.

Und du kennst alle Grössen, bis auf [mm] T_{0} [/mm] und [mm] T_{1}, [/mm] und willst diese haben, auch richtig?

Da wird dir nicht viel übrig bleiben, als die erste Gleichung analytisch nach einer der Variablen aufzuösen, und dann in die zweite Gleichung einzusetzen. Evtl kannst du dann auch diese neu enstandende Gleichung analytisch auflösen, ich befürchte aber, dass du dazu dann ein Näherungsverfahren benötigen wirst. Gleichung 2 ist so jedenfalls nicht analytisch nach [mm] T_{1} [/mm] oder [mm] T_{0} [/mm] auflösbar.

Marius

Bezug
                                                
Bezug
Aufteilen des Bruches: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:15 Mi 25.08.2010
Autor: cmspablo

Hallo...danke ...aber [mm] T_{k,1} [/mm] und [mm] T_{p,1} [/mm] möchte ich gerne haben. also eher [mm] T_{k,1} [/mm] / [mm] T_{p,1} [/mm]

Bezug
                                                        
Bezug
Aufteilen des Bruches: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Mi 25.08.2010
Autor: leduart

Hallo
schreib doch bitte noch mal neu auf, welche Gleichungen du nun genau hast, Das geht mit [mm] T_{k1} [/mm] imd [mm] T_k [/mm] usw wirklich durcheinander
nenn deine Größen mal [mm] X=T_{k1},Y=T_{p1} [/mm] alle anderen bekannten größen a,b,c.... dann kann man das besser durchschauen.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]