matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikAufstellung / Kombinatorik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Kombinatorik" - Aufstellung / Kombinatorik
Aufstellung / Kombinatorik < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufstellung / Kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:09 Fr 01.06.2007
Autor: dbzworld

Aufgabe
Beim Fußballspiel gibt es unterschiedliche Aufstellungen, wie z.B.
das 4 − 4 − 2−System, d.h. 4 Verteidiger, 4 Mittelfeldspieler und 2 Stürmer.
Wieviele verschiedenen Systeme sind vorstellbar?
(10 − 0 − 0 und 0 − 0 − 10 sind besonderes interesant!)

Ich kennt bestimmt die 4 Fälle aus der Kombinatorik, ziehen mit zurücklegen usw....Mit diesen Regeln sollen wir diese Aufgabe lösen.
Meine idee ist das es sich hirbei um ziehen mit zurücklegen, wobei sich die Permutation unterscheiden, handellt. Formel wäre [mm] n^m, [/mm] mein Problem ist jetzt n und m zu bestimmen, m ist die Anzahl der Ziehungen und n die Menge aus der man zieht. M wäre ja 3, man kann ja nur 3 Positionsbereiche auf dem Spielfeld vergeben nur bei der Menge n bin mir nicht sicher. Da ja auch 0-0-10/ 0-10-0 / 10-0-0 vorkommen dürfen.
Wäre dankbar für eine Hilfe, und ich würde gerne wissen ob ich auf dem richtigen Weg mit dieser Formel bin?
gruß
dbzworld

        
Bezug
Aufstellung / Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 22:04 Fr 01.06.2007
Autor: Dhana

Hm, ich denke da bist du auf dem falschen Weg. Ich denke bei der Aufgabe eher an folgenden Lösungsweg:

Erstmal schreibe ich alle 10 Feldspieler als X hin, wir unterscheiden sie ja nicht:

X X X X X X X X X X

Nun nehme ich zwei Trennstriche um die 10 X in 3 Abschnitte zu unterteilen:

X X X | X | X X X X X X

entspricht dabei der Aufstellung 3 - 1 - 7

X X X X X X X X X X | |

wäre 10 - 0 - 0.
Damit bekomme ich sämtliche Aufstellungen. Ich muß nur schauen, wie ich die zwei Trennstriche (oder die 10 X) auf die insgesamt 12 Plätze verteilen kann, dies mit gleichzeitigem Ziehen:

[mm]\vektor{12 \\ 2}[/mm]

Die allgemeine Formel dafür lautet:

[mm]\vektor{n + k - 1 \\ k}[/mm]

Wie genau die Formel heißt weiß ich grad nicht, steht aber in der Formelsammlung unter Kombinatorik ;)

Bezug
                
Bezug
Aufstellung / Kombinatorik: kleiner Fehler
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Fr 01.06.2007
Autor: HJKweseleit

Super Herleitung, alles richtig, nur beim abstrakten Hinschreiben ist dir ein kleiner Irrtum unterlaufen:

Wenn du für n=10 und k=3 wählst, bekommst du ganz richtig

[mm]\vektor{12\\ 2}[/mm],

aber das ist dann

[mm]\vektor{n + k - 1 \\ k-1}[/mm]

und nicht [mm]\vektor{n + k - 1 \\ k}[/mm].

(oder du nimmst für k=2, aber dann musst du oben und unten -1 weglassen.)


Bezug
                        
Bezug
Aufstellung / Kombinatorik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:59 Sa 02.06.2007
Autor: dbzworld

vielen dank erstmal, die Antwort klingt logisch, jedoch macht mir die Formel bedenken. Da die Formel eigentlich auch [mm] \vektor{n+k-1 \\ k} [/mm] ist aber dann passen doch dir Werte nicht mehr...ich hoffe ihr versteht was ich meine.
gruß
dbzworld

Bezug
                        
Bezug
Aufstellung / Kombinatorik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:47 So 03.06.2007
Autor: Dhana

Ah, dann steht einmal unten k-1 und einmal unten n, ich bin mir da jedesmal unsicher welches n und welches k ist, daher hab ich das verwechselt, meinte dann n nicht k-1 ;)

Deshalb der Hinweis auf die Formelsammlung, da schau ich dann ggf. nach bzw. mit den direkten Zahlen gehts eh immer ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]