matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenAufstellen von Ebenengleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Geraden und Ebenen" - Aufstellen von Ebenengleichung
Aufstellen von Ebenengleichung < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufstellen von Ebenengleichung: senkrecht zu Ebene + 2 Pkte
Status: (Frage) beantwortet Status 
Datum: 00:52 Mo 22.01.2007
Autor: LadyVal

Aufgabe
Stellen Sie eine Ebenengleichung der Ebene auf, welche die folgenden Bedingungen erfüllt:
Die Ebene E2 steht senkrecht auf der Ebene E1: [mm] x_1 [/mm] - [mm] x_2 [/mm] + [mm] x_3 [/mm] = 1 und verläuft durch die Punkte P(2/1/3) und Q(3/1/1).

Wenn da "senkrecht" steht, muss ich doch bestimmt den Normalenvektor der Ebene E1, also [mm] n_1=[/mm] [mm]\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}[/mm] verwenden. Und dann? Wie gehts weiter?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Aufstellen von Ebenengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:18 Mo 22.01.2007
Autor: VNV_Tommy

Hallo LadyVal!

[willkommenmr]

> Stellen Sie eine Ebenengleichung der Ebene auf, welche die
> folgenden Bedingungen erfüllt:
>  Die Ebene E2 steht senkrecht auf der Ebene E1: [mm]x_1[/mm] - [mm]x_2[/mm] +
> [mm]x_3[/mm] = 1 und verläuft durch die Punkte P(2/1/3) und
> Q(3/1/1).
>  Wenn da "senkrecht" steht, muss ich doch bestimmt den
> Normalenvektor der Ebene E1, also [mm]n_1=[/mm] [mm]\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}[/mm]
> verwenden. Und dann? Wie gehts weiter?

Du könntest diesen Vektor als einen der beiden Richtungsvektoren in die Parameterform der gesuchten Ebene einsetzen. Als zweiten Richtungsvektor könntest du den Vektor [mm] \overrightarrow{PQ} [/mm] nehmen. Letztendlich brauchst du für die Parameterform nur noch einen Punkt durch den die Ebene verlaufen soll (diesen zu finden sollte nicht sehr schwer sein ;-) ) und schon hast du alles beisammen, was man für ne ordentliche Parameterform benötigt. :-)

Gruß,
Tommy

Bezug
                
Bezug
Aufstellen von Ebenengleichung: also so?
Status: (Frage) beantwortet Status 
Datum: 02:18 Mo 22.01.2007
Autor: LadyVal

hey!

vielen dank fuer die schnelle antwort.

sähe dann so eine moegliche loesung aus?
Richtungsvektor Nr.1: n=[mm]\vektor{1 \\ -1 \\ 2}[/mm]
Richtungsvektor Nr.2: v=[mm]\vektor{2 \\ 1 \\ 3}[/mm] - [mm]\vektor{3 \\ 1 \\ 1}[/mm] = [mm]\vektor{-1 \\ 0 \\ 2}[/mm]
Für den Punkt kann man dann vermutlich P (2/1/3) nehmen, was letztendlich meine Parameterform ordentlich, naemlich so
E2: x= [mm]\vektor{2 \\ 1 \\ 3}[/mm] + s [mm]\vektor{1 \\ -1 \\ 2}[/mm] + t [mm]\vektor{-1 \\ 0 \\ 2}[/mm]
aussehen lässt.

is das dann ordentlich? oder anders gefragt: stimmt das in etwa?
:-)


Bezug
                        
Bezug
Aufstellen von Ebenengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:24 Mo 22.01.2007
Autor: M.Rex

Hallo

> hey!
>  
> vielen dank fuer die schnelle antwort.
>  
> sähe dann so eine moegliche loesung aus?
>  Richtungsvektor Nr.1: n=[mm]\vektor{1 \\ -1 \\ 2}[/mm]
>  
> Richtungsvektor Nr.2: v=[mm]\vektor{2 \\ 1 \\ 3}[/mm] - [mm]\vektor{3 \\ 1 \\ 1}[/mm]
> = [mm]\vektor{-1 \\ 0 \\ 2}[/mm]
>  Für den Punkt kann man dann
> vermutlich P (2/1/3) nehmen, was letztendlich meine
> Parameterform ordentlich, naemlich so
>  E2: x= [mm]\vektor{2 \\ 1 \\ 3}[/mm] + s [mm]\vektor{1 \\ -1 \\ 2}[/mm] + t
> [mm]\vektor{-1 \\ 0 \\ 2}[/mm]
>  aussehen lässt.
>  
> is das dann ordentlich? oder anders gefragt: stimmt das in
> etwa?
> :-)
>  


Korrekt.

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]