matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAuflösung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - Auflösung
Auflösung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auflösung: Auflösung mit Logarithmusgeset
Status: (Frage) beantwortet Status 
Datum: 15:20 Mi 21.09.2011
Autor: Furtano

Aufgabe
habe ln(x²-9) = 2
wie kommt er dann auf
x² - 9 = e²

gibt es da ne formel ?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Auflösung: Umkehrfunktion
Status: (Antwort) fertig Status 
Datum: 15:22 Mi 21.09.2011
Autor: Roadrunner

Hallo Furtano,

[willkommenmr] !!


Hier wurde schlicht und ergreifend verwendet, dass die e-Funktion und die ln-funktion zueinander Umkehrfunktionen sind.

Um also den ln zu entfernen, muss man beide Seiten der Gleichung "e hoch" nehmen.


Gruß vom
Roadrunner


Bezug
        
Bezug
Auflösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Mi 21.09.2011
Autor: Furtano

hi,
danke dir !

aber warum steht dann auf der linken seite nicht:

e^(x² - 9)

Bezug
                
Bezug
Auflösung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:37 Mi 21.09.2011
Autor: fred97

Aus [mm] ln(x^2-9) [/mm] = 2

wird:

                 [mm] e^{ln(x^2-9)}=e^2 [/mm]

und [mm] e^{ln(a)}=a [/mm] für jedes a>0.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]