matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAuflösen nach Variable
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - Auflösen nach Variable
Auflösen nach Variable < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auflösen nach Variable: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:10 Fr 21.12.2007
Autor: Owen

Aufgabe
gegeben ist die Funktion [mm] f(x)=2*x*\wurzel{4*r^{2}-x^{2}}-x^{2}. [/mm] Leite sie ab und bestimme die Nullstellen der Ableitung

Die Ableitung sieht bei mir so aus: [mm] f'(x)=2*(4*r^{2}-x^{2})-2*x^{2}-2*x*\wurzel{4*r^{2}-x^{2}} [/mm]
Das ganze setze ich auf 0:
[mm] 0=2*(4*r^{2}-x^{2})-2*x^{2}-2*x*\wurzel{4*r^{2}-x^{2}} [/mm]
Ich habe leider Probleme das ganze nach x aufzulösen. Wer kann mir helfen?

        
Bezug
Auflösen nach Variable: Ableitung falsch
Status: (Antwort) fertig Status 
Datum: 00:17 Fr 21.12.2007
Autor: Loddar

Hallo Owen!


Deine Ableitung ist leider falsch. Forme zunächst um:

$$f(x) \ = \ [mm] 2x*\wurzel{4r^2-x^2}-x^2 [/mm] \ = \ [mm] 2x*\left(4r^2-x^2\right)^{\bruch{1}{2}}-x^2$$ [/mm]
Nun mittels MBProduktregel ableiten.


Gruß
Loddar


Bezug
                
Bezug
Auflösen nach Variable: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:42 Fr 21.12.2007
Autor: Owen

Aufgabe
s.oben

Hallo Loddar,
ich habe es noch einmal geprüft, komme jedoch auf das gleiche Ergebnis:
f´(x)= [mm] 2*(4*r^{2}-x^{2})^{\bruch{1}{2}}+2*x*\bruch{1}{2}*(4*r^{2}-x^{2})^{\bruch{-1}{2}}*(-2*x)-2*x [/mm]
Dies kann man umformen in die Form, die ich angegeben habe.
Wo habe ich denn den Fehler?

Bezug
                        
Bezug
Auflösen nach Variable: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:00 Fr 21.12.2007
Autor: Zorba

Ich glaube so ist es zwar richtig abgeleitet, aber ich seh nicht wie man das so umformen kann, wie du vorschlägst.

Bezug
                        
Bezug
Auflösen nach Variable: Antwort
Status: (Antwort) fertig Status 
Datum: 07:53 Fr 21.12.2007
Autor: Teufel

Hallo!

Es scheint mir, als wenn du deine Ableitungsfunktion komplett mit [mm] \wurzel{4r²-x²} [/mm] durchmultipliziert hast, was du aber ja bei f'(x) nicht machen darfst.

Wenn du diese dann aber 0 setzt ist der Schritt erlaubt.

Also die Abletung ist richtig, wenn du den rechten Term wieder durch die Wurzel teilst.

Aber wie man das explizit nach x umstellen sollte, weiß ich auch nicht. Wenn man für r eine Zahl hätte, könnte man approximieren, aber so... Weiß nicht.

Bezug
                        
Bezug
Auflösen nach Variable: Antwort
Status: (Antwort) fertig Status 
Datum: 08:46 Fr 21.12.2007
Autor: Steffi21

Hallo, folgender Vorschlag, du hast ja den Zähler der 1. Ableitung gleich Null gesetzt:

[mm] 0=8r^{2}-4x^{2}-2x\wurzel{4r^{2}-x^{2}} [/mm]

[mm] 2x\wurzel{4r^{2}-x^{2}}=8r^{2}-4x^{2} [/mm]

jetzt quadrieren, die Wurzel entfällt, bedenke aber, was passiert

Steffi

Bezug
                                
Bezug
Auflösen nach Variable: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:46 Sa 22.12.2007
Autor: Owen

Hallo Steffi21
Danke für den Tipp, werde es so machen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]