matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenAuflösen e-Gleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - Auflösen e-Gleichungen
Auflösen e-Gleichungen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auflösen e-Gleichungen: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 13:16 Di 14.03.2006
Autor: Snowie

Aufgabe
Lösen Sie die folgenden Gleichungen; das Ergebnis soll jeweils auf zwei Dezimalstellen gefundet angegeben werden:
a) 2lnx=8
b)e^(3-x)=e^-3
c) ln [mm] (x^3-3)=0 [/mm]
d) 1+ lnx²=4
e) 1+2lnx=-1

Hallo, ich brache ein bisschen Hilfe

Mein Lösungsansatz

Annahme y=lnx <=> [mm] x=e^y [/mm] - Da ist sie schon die Frage: kann man das so sagen?

a)
2lnx=8
lnx=4
[mm] x=e^4 [/mm]
x=54,60

b)
e^(3-x)=e^-3
[mm] e^3 [/mm] / [mm] e^x [/mm] = e^-3
[mm] e^3=e^-3*e^x [/mm]
[mm] e^3/e^-3=e^x [/mm]
[mm] e^6=e^x [/mm]
x=log zur Basis e [mm] e^6 [/mm]
x= [mm] lne^6/lne [/mm]
x=6

c)
[mm] ln(x^3-3)=0 [/mm]
[mm] x^3-3=e^0 [/mm]
[mm] x^3-3=1 [/mm]
[mm] x^3=4 [/mm]
3. Wurzel aus x = 1,59

d)
[mm] 1+lnx^2=4 [/mm]
[mm] lnx^2=3 [/mm]
[mm] x^3=e^3 [/mm]
x=e
x=2,72

e)
1+2lnx=-1
2lnx=-2
lnx=-1
x=e^-1
x=0,37



        
Bezug
Auflösen e-Gleichungen: Korrektur
Status: (Antwort) fertig Status 
Datum: 13:26 Di 14.03.2006
Autor: Roadrunner

Hallo Snowie!


> Annahme y=lnx <=> [mm]x=e^y[/mm] - Da ist sie schon die Frage: kann
> man das so sagen?

[ok] Das kann man auf jeden Fall so sagen!




  

> a)
> 2lnx=8
> lnx=4
> [mm]x=e^4[/mm]
> x=54,60

[daumenhoch]



  

> b)
> e^(3-x)=e^-3
> [mm]e^3[/mm] / [mm]e^x[/mm] = e^-3
> [mm]e^3=e^-3*e^x[/mm]
> [mm]e^3/e^-3=e^x[/mm]
> [mm]e^6=e^x[/mm]
> x=log zur Basis e [mm]e^6[/mm]
> x= [mm]lne^6/lne[/mm]
> x=6

[daumenhoch] Richtig, aber viel zu kompliziert!

[mm] $e^{3-x} [/mm] \ = \ [mm] e^{-3}$ $\left| \ \ln(...)$ $\ln\left(e^{3-x}\right) \ = \ \ln\left(e^{-3}\right)$ $3-x \ = \ -3$ usw. [hr] > c) > [/mm]  [mm]ln(x^3-3)=0[/mm]

> [mm]x^3-3=e^0[/mm]
> [mm]x^3-3=1[/mm]
> [mm]x^3=4[/mm]
> 3. Wurzel aus x = 1,59

[daumenhoch]



  

> d)
> [mm]1+lnx^2=4[/mm]
> [mm]lnx^2=3[/mm]

[ok]


> [mm]x^3=e^3[/mm]

[notok] Wo kommt hier denn plötzlich das [mm] $(...)^{\red{3}}$ [/mm] auf der linken Seite her?




> e)
> 1+2lnx=-1
> 2lnx=-2
> lnx=-1
> x=e^-1
> x=0,37

[daumenhoch]


Gruß vom
Roadrunner


Bezug
                
Bezug
Auflösen e-Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:06 Di 14.03.2006
Autor: Snowie

Aufgabe
Lösen Sie die folgenden Gleichungen

Tausend Dank für deine schnelle Antwort.

zu d) Also ist

1+lnx²=4
lnx²=3
x²=e³
x = Wurzel aus e³
x=4,49
Wahr wohl ein Flüchtigkeitsfehler ;-)

Liebe Grüße
Snowie


Bezug
                        
Bezug
Auflösen e-Gleichungen: Mini-Korrektur
Status: (Antwort) fertig Status 
Datum: 18:11 Di 14.03.2006
Autor: Roadrunner

Hallo Snowie!


> zu d) Also ist
>
> 1+lnx²=4
> lnx²=3
> x²=e³

[ok]

> x = Wurzel aus e³ ?

Hier unterschlägst Du eine Lösung, es gibt ja eine negative und eine positive Lösung!

[mm] $x_{1/2} [/mm] \ = \ [mm] \pm \wurzel{e^3} [/mm] \ = \ [mm] \pm e^{\bruch{3}{2}}$ [/mm]


Und dann fehlt noch der gerundete Zahlenwert ...


Gruß vom
Roadrunner


Bezug
                                
Bezug
Auflösen e-Gleichungen: Danke, stimmt ;-)
Status: (Frage) beantwortet Status 
Datum: 18:15 Di 14.03.2006
Autor: Snowie

Stimmt die hatte ich vergessen ...
x1=4,49
x2=-4,49

Bezug
                                        
Bezug
Auflösen e-Gleichungen: schlecht gerundet ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:17 Di 14.03.2006
Autor: Roadrunner

Hallo Snowie!


Genauer erhalte ich [mm] $x_{1/2} [/mm] \ = \ [mm] \pm [/mm] \ [mm] 4.4\red{8}$ [/mm] .


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]