matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperAuflösbare Gruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Auflösbare Gruppe
Auflösbare Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auflösbare Gruppe: Korrektur?
Status: (Frage) beantwortet Status 
Datum: 00:40 So 31.07.2011
Autor: tinakru

Aufgabe
Zeigen sie dass die [mm] S_{4} [/mm] auflösbar ist indem sie eine Normalreihe angeben.

Guten Morgen,

ich habe die Aufgabe eigentlich schon gelöst an der Uni, hätte nur ne klitzekleine :) Frage dazu.

Das Normalteilersymbol habe ich leider in der Liste nicht entdeckt, habe im Folgenden dafür das kleiner zeichen < verwendet.

Wir haben dazu die Normalreihe

{e}< N < V4 < A4 < S4

angegeben mit N = <(12)(34)> und [mm] V_{4} [/mm] ist die Untergruppe mit 4 Elementen.

Meine Frage: Hätte nicht diese Normalreihe auch genügt:

{e}< V4 < A4 < S4

Also ohne N.
Es gilt nämlich [V4 : {e}] = 4 und wir wissen, dass alle Gruppen der Ordnung 4 abelsch sind.

Muss diese Kette immer größtmöglich sein, oder reicht auch die kleinstmöglich, also hauptsache die Restklassengruppen [mm] N_{i} [/mm] / [mm] N_{i+1} [/mm]
sind abelsch.

Danke

LG
Tina

        
Bezug
Auflösbare Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:44 So 31.07.2011
Autor: felixf

Moin Tina!

> Zeigen sie dass die [mm]S_{4}[/mm] auflösbar ist indem sie eine
> Normalreihe angeben.
>  
> ich habe die Aufgabe eigentlich schon gelöst an der Uni,
> hätte nur ne klitzekleine :) Frage dazu.
>  
> Das Normalteilersymbol habe ich leider in der Liste nicht
> entdeckt, habe im Folgenden dafür das kleiner zeichen <
> verwendet.
>  
> Wir haben dazu die Normalreihe
>
> {e}< N < V4 < A4 < S4
>
> angegeben mit N = <(12)(34)> und [mm]V_{4}[/mm] ist die Untergruppe
> mit 4 Elementen.
>  
> Meine Frage: Hätte nicht diese Normalreihe auch genügt:
>  
> {e}< V4 < A4 < S4
>
> Also ohne N.

Ja.

>  Es gilt nämlich [V4 : {e}] = 4 und wir wissen, dass alle
> Gruppen der Ordnung 4 abelsch sind.

[ok]

> Muss diese Kette immer größtmöglich sein, oder reicht
> auch die kleinstmöglich, also hauptsache die
> Restklassengruppen [mm]N_{i}[/mm] / [mm]N_{i+1}[/mm]
> sind abelsch.

Es reicht auch die kleinstmoegliche Kette. Manche geben halt gern eine laengstmoegliche Kette an (die dann auch eine Kompositionsreihe ist), also bei aufloesbaren Gruppen laeuft es darauf hinaus dass die Quotienten zyklisch von Primzahlordnung sind. Aber um zu schauen ob die Gruppe aufloesbar ist muss man das nicht.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]