matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisAufleitung der e-Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Aufleitung der e-Funktion
Aufleitung der e-Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufleitung der e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:43 Mi 14.12.2005
Autor: Mirchen

Aufgabe
Integral im Intervall 0;1 für [mm] (x-1)*e^{x-2} [/mm] bestimmen

Ich weiß nicht, wie ich das mit dem Substitutionsverfahren machen soll...Hab dann immer einen Vorfaktor mit x...Danke schonmal
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Aufleitung der e-Funktion: Integral
Status: (Antwort) fertig Status 
Datum: 20:13 Mi 14.12.2005
Autor: Zwerglein

Hi, Mirchen,

sag' doch bitte nicht "Aufleitung": Das Wort kommt mir vor, als stünde es im Lehrbuch "Klein-Fitzemännchen im Mathe-Märchenland".
Das heißt: Integrieren!

Nun zu Deinem Problem:

> Integral im Intervall 0;1 für [mm](x-1)*e^{x-2}[/mm] bestimmen
>  Ich weiß nicht, wie ich das mit dem Substitutionsverfahren
> machen soll...Hab dann immer einen Vorfaktor mit x...Danke

Das geht auch nicht mit Substitution, sondern mit partieller Integration:
u(x) = (x-1); u'(x) = 1.
v'(x) = [mm] e^{x-2}; [/mm] v(x) = [mm] e^{x-2} [/mm]

Stammfunktion: F(x) = [mm] (x-2)*e^{x-2} [/mm]

mfG!
Zwerglein  

Bezug
                
Bezug
Aufleitung der e-Funktion: Korrektur Fragestellung
Status: (Frage) beantwortet Status 
Datum: 21:44 Mi 14.12.2005
Autor: Mirchen

Aufgabe
Integral von [mm] (x-1)e^{x^2-2} [/mm] im Intervall 0,1  

Hab die Aufgabe falsch gestellt...sonst wär das auch nicht das problem gewesen, aber find keine Stammfunktion zu [mm] e^{x^2-2}. [/mm] trotzdem danke :)

Bezug
                        
Bezug
Aufleitung der e-Funktion: Tipp
Status: (Antwort) fertig Status 
Datum: 21:53 Mi 14.12.2005
Autor: informix

Hallo,
> Integral von [mm](x-1)e^{x^2-2}[/mm] im Intervall 0,1
> Hab die Aufgabe falsch gestellt...sonst wär das auch nicht
> das problem gewesen, aber find keine Stammfunktion zu
> [mm]e^{x^2-2}.[/mm] trotzdem danke :)

Hilft es dir, wenn du bemerkst, dass [mm] $e^{x^2-2} [/mm] = [mm] e^{x^2} [/mm] * [mm] e^{-2}$ [/mm] gilt und letzterer ein konstanter Faktor in der Aufgabe ist?

Gruß informix


Bezug
                                
Bezug
Aufleitung der e-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:03 Mi 14.12.2005
Autor: Mirchen

Danke-hab ich gar nicht mehr dran gedacht..Dann schaff ich das ja doch ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]