matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisAufleitung 
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Aufleitung
Aufleitung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufleitung : Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:59 Di 07.09.2004
Autor: IsleOfTechno

Wie leite ich [mm] f(x)=2^x [/mm] auf ?

Ich habe diese Frage in keinem weiteren Forum gestellt.

        
Bezug
Aufleitung : Aufleitung
Status: (Antwort) fertig Status 
Datum: 20:04 Di 07.09.2004
Autor: andreas

hi Eugen

es gilt [m] 2^x = \left( e^{\ln 2} \right)^x = e^{x \ln 2} [/m] mit der substitution [m] t = x \ln 2 [/m] erhälst du
[m] \int 2^x \, \text{d} x = \frac{1 }{\ln 2} \int e^t \, \text{d} t [/m]

kommst du nun weiter? sonst frage nochmal nach!

grüße
andreas

Bezug
        
Bezug
Aufleitung : Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:50 Di 02.11.2004
Autor: Back-Up

Hallo,

ich möchte folgende Funktion aufleiten:

[mm] f(x)=\bruch{1}{\wurzel[3]{x^4}} [/mm]

Mein Lösungsvorschlag:
[mm] f(x)=\bruch{1}{x^\bruch{4}{3}} [/mm]
[mm] f(x)=x^\bruch{-4}{3} [/mm]

[mm] F(x)=-3x^\bruch{-1}{3} [/mm]
[mm] F(x)=\bruch{1}{3\wurzel[3]{x}} [/mm]

Kann das sein? Wäre super, wenn jemand heute noch Stellung nehmen könnte. Ist Teil einer Hausaufgabe. Danke.
Falls jemand eine gute Erklärung für Auf- und Ableitung im Internet kennt wäre ich daran interessiert.


MfG
Back-Up

Bezug
                
Bezug
Aufleitung : Korrektur
Status: (Antwort) fertig Status 
Datum: 15:07 Di 02.11.2004
Autor: Paulus

Hallo Back-Up

> Hallo,
>  
> ich möchte folgende Funktion aufleiten:
>  
> [mm]f(x)=\bruch{1}{\wurzel[3]{x^4}} [/mm]
>  
> Mein Lösungsvorschlag:
>  [mm]f(x)=\bruch{1}{x^\bruch{4}{3}} [/mm]
>  [mm]f(x)=x^\bruch{-4}{3} [/mm]

[ok] Sehr gute Idee!

>  
> [mm]F(x)=-3x^\bruch{-1}{3} [/mm]

[ok]

>  [mm]F(x)=\bruch{1}{3\wurzel[3]{x}} [/mm]

[notok] Warum erscheint jetzt die $3_$ plötzlich unter dem Bruchstrich?
Und wo ist das Minus geblieben?

Sicher nur ein Schusselfehler!

Besser also:

[mm] $F(x)=\bruch{-3}{\wurzel[3]{x}}$ [/mm]

Dann sollte noch beachtet werden, dass für das unbestimmte Integral noch eine Konstante hinzuaddiert werden sollte:

[mm] $F(x)=c-\bruch{3}{\wurzel[3]{x}}$ [/mm]

Ein Tipp: ich würde jeweils einfach eine Stammfunktion wieder ableiten, dann sollte wieder die Ursprungsfunktion entstehen. :-)
Mit lieben Grüssen

Paul

Bezug
                        
Bezug
Aufleitung : Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 Di 02.11.2004
Autor: Back-Up

Danke!

Jetzt noch weitere Funktionen:

[mm] f(x)=\bruch{1}{\wurzel{x^3}} [/mm]
[mm] f(x)=x^\bruch{-3}{2} [/mm]

[mm] F(x)=c-\bruch{2}{\wurzel{x}} [/mm]

[mm] g(x)=\bruch{1}{x^2} [/mm]
g(x)=x^-2

[mm] G(x)=c-\bruch{1}{x} [/mm]

[mm] h(x)=\bruch{1}{x^5} [/mm]
h(x)=x^-5

[mm] H(x)=c-\bruch{1}{4x^4} [/mm]

[mm] j(x)=\bruch{1}{\wurzel[3]{x^2}} [/mm]
[mm] j(x)=x^\bruch{-2}{3} [/mm]

[mm] J(x)=c-\bruch{3}{\wurzel[3]{x}} [/mm]

Richtig?

Bezug
                                
Bezug
Aufleitung : Fast alles richtig
Status: (Antwort) fertig Status 
Datum: 17:22 Di 02.11.2004
Autor: Paulus

Hallo Back-Up

> Danke!
>  
> Jetzt noch weitere Funktionen:
>  
> [mm]f(x)=\bruch{1}{\wurzel{x^3}} [/mm]
>  [mm]f(x)=x^\bruch{-3}{2} [/mm]
>  
> [mm]F(x)=c-\bruch{2}{\wurzel{x}} [/mm]
>  

[ok]

> [mm]g(x)=\bruch{1}{x^2} [/mm]
>  g(x)=x^-2
>  
> [mm]G(x)=c-\bruch{1}{x} [/mm]

[ok]

>  
> [mm]h(x)=\bruch{1}{x^5} [/mm]
>  h(x)=x^-5
>  
> [mm]H(x)=c-\bruch{1}{4x^4} [/mm]

[ok]

>  
> [mm]j(x)=\bruch{1}{\wurzel[3]{x^2}} [/mm]
>  [mm]j(x)=x^\bruch{-2}{3} [/mm]
>  
> [mm]J(x)=c-\bruch{3}{\wurzel[3]{x}} [/mm]

[notok] Nach meiner Rechunun gilt: [mm] $-\bruch{2}{3}+1=\bruch{1}{3}$ [/mm] (positiv)


Mit lieben Grüssen

Paul

Bezug
                                        
Bezug
Aufleitung : Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:59 Di 02.11.2004
Autor: Back-Up

Bei mir auch ;). So hab ich gedacht:

[mm] J(x)=c+3x^\bruch{1}{3} [/mm]
weil bei Ableitung:
[mm] 3*\bruch{1}{3}=1 [/mm]
und
[mm] x^{\bruch{1}{3}-1} [/mm] =
[mm] j(x)=x^\bruch{-2}{3} [/mm]
[mm] J(x)=c-\bruch{3}{x^\bruch{1}{3}} [/mm]
[mm] J(x)=c-\bruch{3}{\wurzel[3]{x}} [/mm]

Wo ist mein Denkfehler?

Bezug
                                                
Bezug
Aufleitung : Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Di 02.11.2004
Autor: Brigitte

Hallo!

> Bei mir auch ;). So hab ich gedacht:
>  
> [mm]J(x)=c+3x^\bruch{1}{3}[/mm]
>  weil bei Ableitung:
> [mm]3*\bruch{1}{3}=1[/mm]
>  und
>  [mm]x^{\bruch{1}{3}-1}[/mm] =
>  [mm]j(x)=x^\bruch{-2}{3}[/mm]

[ok]

>  [mm]J(x)=c-\bruch{3}{x^\bruch{1}{3}}[/mm]

Was passiert denn nun? Du wechselst das Vorzeichen vor dem Bruch und gleichzeitig im Exponenten. Das ist falsch. Es gilt

[mm]J(x)=c+3x^\bruch{1}{3}=c+3\sqrt[3]{x}[/mm]

>  [mm]J(x)=c-\bruch{3}{\wurzel[3]{x}}[/mm]

Viele Grüße
Brigitte


Bezug
                                                        
Bezug
Aufleitung : Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:27 Mi 03.11.2004
Autor: Back-Up

Jetzt ist mir ein Licht aufgegangen. Verstanden! Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]