matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraAufgabenblatt 7.1
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Aufgabenblatt 7.1
Aufgabenblatt 7.1 < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabenblatt 7.1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 Fr 01.01.2021
Autor: ireallydunnoanything

Aufgabe 1
Es sei G eine Gruppe und N sei eine normale Untergruppe von G. Zeigen Sie, dass G/N genau dann abelsch ist, wenn [G, G] < N. Insbesondere ist G/[G, G] abelsch.

Aufgabe 2
Es sei G eine einfache, nicht-abelsche Gruppe und A sei eine abelsche Gruppe. Beweisen Sie, dass alle Homomorphismen f : G → A trivial sind.

zu Aufgabe 1) Mir fehlt noch das grundlegende Verständnis was eine "normale Untergruppe" ist. Könnte mir das jemand erklären und mir helfen einen Ansatz für diese Aufgabe zu finden ? Abelsch ist klar: das bedeutet a*b = b*a (wenn die Verknüpfung die Multiplikation ist).

zu Aufgabe 2) Hier fehlt mir auch jeglicher Ansatz, den ich brauche, um die Aufgabe zu lösen. Homomorphismus ist klar, dass bedeutet f(x+y)/f(x*y) = f(x) + f(y)/f(x)*f(y). Über eine Erklärung und den Ansatz zu dieser Aufgabe wäre ich sehr dankbar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Aufgabenblatt 7.1: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Fr 01.01.2021
Autor: statler

Hi!

> Es sei G eine Gruppe und N sei eine normale Untergruppe von
> G. Zeigen Sie, dass G/N genau dann abelsch ist, wenn [G, G]
> < N. Insbesondere ist G/[G, G] abelsch.

>  Es sei G eine einfache, nicht-abelsche Gruppe und A sei
> eine abelsche Gruppe. Beweisen Sie, dass alle
> Homomorphismen f : G → A trivial sind.

>  zu Aufgabe 1) Mir fehlt noch das grundlegende Verständnis
> was eine "normale Untergruppe" ist. Könnte mir das jemand
> erklären und mir helfen einen Ansatz für diese Aufgabe zu
> finden ? Abelsch ist klar: das bedeutet a*b = b*a (wenn die
> Verknüpfung die Multiplikation ist).

Normal bedeutet, daß aN = Na für alle a [mm] $\in$ [/mm] G ist. Wenn G/N abelsch ist, dann ist aN [mm] $\cdot$ [/mm] bN = bN [mm] $\cdot$ [/mm] aN, also abN = baN, also [mm] a^{-1}b^{-1}abN [/mm] = N, und das ist genau das, was du brauchst.

>  
> zu Aufgabe 2) Hier fehlt mir auch jeglicher Ansatz, den ich
> brauche, um die Aufgabe zu lösen. Homomorphismus ist klar,
> dass bedeutet f(x+y)/f(x*y) = f(x) + f(y)/f(x)*f(y). Über
> eine Erklärung und den Ansatz zu dieser Aufgabe wäre ich
> sehr dankbar.

Wenn G keine Normalteiler hat, ist jeder Homomrphismus injektiv oder trivial. Injektiv kann er hier nicht sein, da A abelsch ist und G nicht, also ist er trivial.

Gruß D


Bezug
                
Bezug
Aufgabenblatt 7.1: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:35 Sa 02.01.2021
Autor: ireallydunnoanything

Vielen Dank für die schnelle Antwort. Das hilft mir auf jeden Fall weiter.

Gruß

Alex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]