matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenAufgaben zu komplexen Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - Aufgaben zu komplexen Zahlen
Aufgaben zu komplexen Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgaben zu komplexen Zahlen: Idee
Status: (Frage) beantwortet Status 
Datum: 09:02 So 27.04.2014
Autor: Kruemel1008

Aufgabe 1
Sei r(x) = [mm] x^3 [/mm] + [mm] (1+i)x^2 [/mm] +(2i-3)x +5i -5 und [mm] x_1 [/mm] = i-1

a) Zeigen Sie, dass [mm] x_1 [/mm] eine Nullstelle von r ist.
b) Bestimmen Sie ein Polynom q mit r(x) = q(x) + ( x - [mm] x_1 [/mm] ) für [mm] x\in\IC\sub. [/mm]
c) Bestimmen Sie alle Lösungen von r(x)=0.

Aufgabe 2
Seien [mm] a,b\in\IR\sub [/mm] und c=a+bi mit a+ [mm] \left| c \right| [/mm] > 0. Sei u= [mm] \pm \wurzel{0,5(a+ \left| c \right| )}, [/mm] sei v= [mm] \bruch{b}{2u} [/mm] und w=u+vi. Zeigen Sie:
[mm] w^2 [/mm] = c

Zu Aufgabe 1:
a) Hier habe ich [mm] x_1 [/mm] in r(x) eingesetzt und 0 = [mm] i^3 [/mm] + [mm] i^2 [/mm] + i + 1 rausbekommen, was mir irgendwie nicht weiterhilft.
b)+c) Hier habe ich keine Ahnung wie ich ansetzen soll.

Zu Aufgabe 2:
Hier fehlt mir ebenfalls jeglicher ansatz, da ich nie zuvor mit komplexen zahlen gerechnet habe.

        
Bezug
Aufgaben zu komplexen Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:12 So 27.04.2014
Autor: fred97


> Sei r(x) = [mm]x^3[/mm] + [mm](1+i)x^2[/mm] +(2i-3)x +5i -5 und [mm]x_1[/mm] = i-1
>  
> a) Zeigen Sie, dass [mm]x_1[/mm] eine Nullstelle von r ist.
>  b) Bestimmen Sie ein Polynom q mit r(x) = q(x) + ( x - [mm]x_1[/mm]
> ) für [mm]x\in\IC\sub.[/mm]


Ich vermute, es lautet [mm] r(x)=q(x)(x-x_1) [/mm]



>  c) Bestimmen Sie alle Lösungen von r(x)=0.
>  Seien [mm]a,b\in\IR\sub[/mm] und c=a+bi mit a+ [mm]\left| c \right|[/mm] >

> 0. Sei u= [mm]\pm \wurzel{0,5(a+ \left| c \right| )},[/mm] sei v=
> [mm]\bruch{b}{2u}[/mm] und w=u+vi. Zeigen Sie:
>  [mm]w^2[/mm] = c
>  Zu Aufgabe 1:
>  a) Hier habe ich [mm]x_1[/mm] in r(x) eingesetzt und 0 = [mm]i^3[/mm] + [mm]i^2[/mm]
> + i + 1 rausbekommen, was mir irgendwie nicht weiterhilft.


Es ist doch [mm] i^2=-1 [/mm] und [mm] i^3=-i [/mm]


>  b)+c) Hier habe ich keine Ahnung wie ich ansetzen soll.


Zu b) Polynomdivision: [mm] r(x):(x-x_1) [/mm]

Zu c)  Eine Lösung der Gl. r(x)=0 hast Du schon: [mm] x_1=i-1. [/mm]

Die restlichen bekommst Du aus der quadratischen Gleichung q(x)=0

>  
> Zu Aufgabe 2:
>  Hier fehlt mir ebenfalls jeglicher ansatz, da ich nie
> zuvor mit komplexen zahlen gerechnet habe.

Es ist [mm] w^2=u^2+2iuv-v^2. [/mm] Rechne das mal aus. Erhalten solltest Du c=a+ib.


FRED


Bezug
                
Bezug
Aufgaben zu komplexen Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:19 So 27.04.2014
Autor: Kruemel1008

Mmmmh, irgendwie klappt das alles nicht ...
Bei 1a) hab ich jetzt -1 raus, da sollte ja aber i-1 rauskommen, das i ist jedoch weggefallen (0=-i+1+i-2)
Bei b) muss ich dann die Polynomdivision von [mm] (x^3 [/mm] + [mm] (1+i)x^2 [/mm] + (2i-3)x + 5i-5)/(x-(i-1)) machen ? ... da scheitere ich schon beim ersten schritt weil ich nichts finde mit dem ich (i-1) mal nehmen kann um 1 zu erhalten
c) kenn ich ohne b) ja nicht machen ....

Bei zwei hab ich in die [mm] w^2 [/mm] formel eingesetzt, ich weis jedoch nicht wie ich diese auflösen kann da ich nicht weis wie ich das [mm] \pm [/mm] (welches durch einsetzen von u ja nun in der formel steht) zu handhaben habe.

Bezug
                        
Bezug
Aufgaben zu komplexen Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:00 So 27.04.2014
Autor: Kruemel1008

Ich habe mitlerweile Aufgabe 1a) hinbekommen, jetzt fehlt nur noch der Rest ;)

Bezug
                        
Bezug
Aufgaben zu komplexen Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:21 So 27.04.2014
Autor: Steffi21

Hallo, es ist [mm] x_1=i-1 [/mm] einzusetzen

[mm] (i-1)^3+(1+i)*(i-1)^2+(2i-3)*(i-1)+5i-5 [/mm]

[mm] =(i-1)^2*(i-1)+(1+i)*(i-1)^2+(2i-3)*(i-1)+5i-5 [/mm]

=-2i*(i-1)+(1+i)*(-2i)+(2i-3)*(i-1)+5i-5

=2+2i-2i+2-2-2i-3i+3+5i-5

=0

zur Polynomdivision

   [mm] [x^3+(1+i)x^2+(2i-3)x+5i-5]:[x-(i-1)]=x^2+2ix-5 [/mm]
  [mm] -[x^3-(i-1)x^2] [/mm]
  -----------
         [mm] 2ix^2 [/mm]
        [mm] -[2ix^2+(2i+2)x] [/mm]
         ------------
                 -5x
                 -[-5x+5i-5]
                  ----------
                          0

Steffi




Bezug
                                
Bezug
Aufgaben zu komplexen Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:13 So 27.04.2014
Autor: Kruemel1008

Ahhh, super, danke, die c) hab ich dann jetzt auch damit rausbekommen :D
Weis denn jemand wie ich bei der Aufgabe 2 vorgehen muss?

Bezug
                                        
Bezug
Aufgaben zu komplexen Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 So 27.04.2014
Autor: fred97


> Ahhh, super, danke, die c) hab ich dann jetzt auch damit
> rausbekommen :D
>  Weis denn jemand wie ich bei der Aufgabe 2 vorgehen muss?

Hab ich Dir doch gesagt !!!

$ [mm] w^2=u^2+2iuv-v^2. [/mm] $

Setze doch u und v ein und schau was passiert.

FRED


Bezug
                                                
Bezug
Aufgaben zu komplexen Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:36 So 27.04.2014
Autor: Kruemel1008

Hab ich ja getan, aber ich weis nicht wie ich das mit dem [mm] \pm [/mm] beim zusammenfassen handhaben soll ?

Bezug
                                                        
Bezug
Aufgaben zu komplexen Zahlen: zwei Rechnungen
Status: (Antwort) fertig Status 
Datum: 15:23 So 27.04.2014
Autor: Loddar

Hallo Krümel!


Dann führe die Rechnung zwei-mal durch.
Einmal für +, einmal für -.


Gruß
Loddar

Bezug
                                                        
Bezug
Aufgaben zu komplexen Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 So 27.04.2014
Autor: Calculu

Und nutze aus, dass der Betrag deiner komplexen Zahl die Länge des Zeigers ist. Es gilt also: [mm] |c|=\wurzel{a^{2}+b^{2}} [/mm]
Falls du nicht mehr weiter kommst, schreib deine Rechnung hier mal auf, dann kann dir sicher jemand einen Tipp zum weiteren Vorgehen geben!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]