matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteAufgaben Eigenwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - Aufgaben Eigenwerte
Aufgaben Eigenwerte < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgaben Eigenwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 So 16.05.2010
Autor: Lyrn

Aufgabe
Sei X ein [mm] \IR [/mm] VR der Dimension 2 und [mm]f: X \to X[/mm] ein Endomorphismus mit dem charakteristischen Polynom [mm]x^{2}-1[/mm].

(i) Welche Eigenwerte hat [mm]f[/mm]?
(ii) Existiert eine Basis aus Eigenvektoren?
(iii) Bestimme [mm]f^{2}[/mm]
(iv) Beschreibe [mm]f[/mm] geometrisch für den Fall, dass die beiden Eigenvektoren aus (ii) senkrecht aufeinander stehen.

Hallo,
Ich brauche Hilfe bzw. ein paar Ansätze zu den Aufgaben.

(i) ist klar, -1 und 1

(ii) Mein Ansatz wäre die Diagonalmatrix aufzustellen. Also: [mm]\pmat{-1 & 0 \\ 0 & 1}[/mm]. Jetzt weiß ich aber nicht wie ich daraus die Basis aus Eigenvektoren bestimmen soll.

(iii) [mm]f^{2}[/mm] heißt ja [mm]f \circ f[/mm]. Also [mm]f^{2}:X \to X \to X[/mm]. Aber wie bestimme ich jetzt genau [mm]f^{2}[/mm]?

(iv) hier fehlt mir (ii)

        
Bezug
Aufgaben Eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 So 16.05.2010
Autor: angela.h.b.


> Sei X ein [mm]\IR[/mm] VR der Dimension 2 und [mm]f: X \to X[/mm] ein
> Endomorphismus mit dem charakteristischen Polynom [mm]x^{2}-1[/mm].
>  
> (i) Welche Eigenwerte hat [mm]f[/mm]?
>  (ii) Existiert eine Basis aus Eigenvektoren?
>  (iii) Bestimme [mm]f^{2}[/mm]
>  (iv) Beschreibe [mm]f[/mm] geometrisch für den Fall, dass die
> beiden Eigenvektoren aus (ii) senkrecht aufeinander
> stehen.
>  Hallo,
>  Ich brauche Hilfe bzw. ein paar Ansätze zu den Aufgaben.
>  
> (i) ist klar, -1 und 1

Hallo,

ja, genau.

>  
> (ii) Mein Ansatz wäre die Diagonalmatrix aufzustellen.
> Also: [mm]\pmat{-1 & 0 \\ 0 & 1}[/mm]. Jetzt weiß ich aber nicht
> wie ich daraus die Basis aus Eigenvektoren bestimmen soll.

Das ist auch nicht gefordert. Du sollst doch bloß sagen, ob es eine gibt.

Na, das ist nicht so schwer: Eigenvektoren zu verschiedenen Eigenwerten sind linear unabhängig, und Du hast zwei verschiedene Eigenwerte. Also?

Und bzgl dieser Eigenbasis hat die darstellende Matrix von f die Diagonalgestalt, die Du oben angibst.

>  
> (iii) [mm]f^{2}[/mm] heißt ja [mm]f \circ f[/mm]. Also [mm]f^{2}:X \to X \to X[/mm].
> Aber wie bestimme ich jetzt genau [mm]f^{2}[/mm]?

Überleg Dir, welches die darstellende Matrix von [mm] f^2=f\circ [/mm] f ist.

>  
> (iv) hier fehlt mir (ii)

Nein.

Du stellst Dir jetzt vor, daß die beiden Eigenvektoren [mm] b_1 [/mm] und [mm] b_2 [/mm] orthogonal sind.
[mm] f(b_1)=-b_1 [/mm] und [mm] f(b_2)=b_2. [/mm]
Was für eine Abbildung ist das, die die eine Richtung fest läßt und dazu senkrechte Vektoren umklappt?

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]