matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisAufgabe zur Stetigkeit/Diffbk.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Aufgabe zur Stetigkeit/Diffbk.
Aufgabe zur Stetigkeit/Diffbk. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe zur Stetigkeit/Diffbk.: Frage
Status: (Frage) beantwortet Status 
Datum: 13:26 Mi 12.01.2005
Autor: Webranger3000

Ich hab hier eine Aufgabe die ich sonst nirgends gestellt habe:

Es sei f: [a,b] -> R stetig und in (a,b) zweimal differenzierbar mit f''(x) [mm] \ge [/mm] 0
für alle x aus (a,b).
Zeige:
Für alle x gilt f(x) [mm] \ge [/mm] max {f(a),f(b)}

Ich weiß nicht wirklich wie ich anfangen soll, ich dachte an den Mittelwertsatz, aber damit kann ich ja nicht zeigen, dass die Werte "im Innern" kleiner sein müssen als die am Rand.

Wie geht die Aufgabe?
Vielen Dank für eure Mühe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Aufgabe zur Stetigkeit/Diffbk.: Ansatz
Status: (Antwort) fertig Status 
Datum: 16:39 Mi 12.01.2005
Autor: Astrid

Hallo,


> Es sei f: [a,b] -> R stetig und in (a,b) zweimal
> differenzierbar mit f''(x) [mm]\ge[/mm] 0
>  für alle x aus (a,b).
>  Zeige:
>  Für alle x gilt f(x) [mm]\ge[/mm] max {f(a),f(b)}
>  
> Ich weiß nicht wirklich wie ich anfangen soll, ich dachte
> an den Mittelwertsatz, aber damit kann ich ja nicht zeigen,
> dass die Werte "im Innern" kleiner sein müssen als die am
> Rand.
>  

Die zu untersuchende Funktion ist konvex, da [mm]f''(x) \geq 0[/mm].
Das bedeutet insbesondere: [mm]\forall \lambda \in [0,1]: f(\lambda a + (1-\lambda)b) \le \lambda f(a) + (1-\lambda) f(b)[/mm] und damit für jedes [mm]x \in [a,b]: f(x) \le \lambda f(a) + (1-\lambda) f(b)[/mm].
Nimm dir diesen Tipp als Startpunkt und versuche, den Beweis hier richtig aufzuschreiben! Jemand wird dann sicher gern noch einmal drüberschauen!

Viele Grüße
Astrid

Bezug
        
Bezug
Aufgabe zur Stetigkeit/Diffbk.: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 08:55 Fr 14.01.2005
Autor: Webranger3000

Also muss ich dann weiterbeweisen so:

f(a) [mm] \ge \bruch{f(x)-(1- \lambda)f(b)}{ \lambda} [/mm]
andererseits ist
f(b) [mm] \ge \bruch{f(x)- \lambda f(a)}{(1- \lambda)} [/mm]

d.h. f(a) bzw. f(b) sind immer obere Schranken, und f(x) wird für alle x maximal so groß

Reicht das so?
Grüße

Bezug
                
Bezug
Aufgabe zur Stetigkeit/Diffbk.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Fr 14.01.2005
Autor: Astrid


> Also muss ich dann weiterbeweisen so:
>  
> f(a) [mm]\ge \bruch{f(x)-(1- \lambda)f(b)}{ \lambda} [/mm]
>  
> andererseits ist
>  f(b) [mm]\ge \bruch{f(x)- \lambda f(a)}{(1- \lambda)} [/mm]
>  
> d.h. f(a) bzw. f(b) sind immer obere Schranken, und f(x)
> wird für alle x maximal so groß
>  

Nein, das reicht leider nicht, denn so zeigst du im Prinzip eine obere Schranken für z.B. [mm] \bruch{f(x)-(1- \lambda)f(b)}{ \lambda} [/mm].

Mir fällt gerade auf, dass du in der Fragestellung geschrieben hast:
[mm]f(x) \geq max \{f(a), f(b)\}[/mm] bei [mm]f''(x) \geq 0[/mm]. Das würde nicht zusammenpassen, siehe [mm]f(x)=e^x[/mm].

Wir wissen:
[mm]f(x) \leq \lambda f(a) + (1-\lambda) f(b)[/mm] weil [mm]f''(x) \geq 0[/mm]
und du sollst (wahrscheinlich) zeigen:
[mm]f(x) \leq max\{f(a), f(b)\}[/mm]

Sei nun obdA [mm]f(a) \leq f(b) [/mm] (für den Fall [mm]f(a) \geq f(b) [/mm] funktioniert der Beweis analog), dann gilt doch:
[mm]f(x) \leq \lambda f(a) + (1-\lambda) f(b) \leq \\ \lambda f(b) + (1-\lambda) f(b) = f(b) [/mm] .
Also folgt:
[mm]f(x) \leq max\{f(a), f(b)\}[/mm]

Ich hoffe, ich konnte dir helfen!

Viele Grüße
Astrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]