matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisAufgabe zu Ringen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Aufgabe zu Ringen
Aufgabe zu Ringen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe zu Ringen: Lösung
Status: (Frage) beantwortet Status 
Datum: 15:48 Mo 29.11.2004
Autor: DerMathematiker

Hallo Ihr, also ich bräuchte mal ne lösung zur folgenden Aufgabe:

Die abelsche Gruppe [mm] (\IZ,+) [/mm] der ganzen Zahlen wurde konstruiert. [mm] \IZ [/mm] wird nun wie folgt mit einer Multiplikation ausgesattet. Man setzt für alle x [mm] \in \IZ. [/mm]

x*0 :=0
x*(y+1):=x*y + x [mm] \forall [/mm] y [mm] \in \IN [/mm] mit der 0
und
x*(-y):=-(x*y) [mm] \forall [/mm] y [mm] \in \IN. [/mm]

Zeigen Sie, dass [mm] (\IZ, [/mm] + ,*) ein kommutativer Ring ist, dessen neutrales Element bzgl. der Multiplikation die 1 ist. Zeigen Sie dazu, dass für beliebige x,y und z [mm] \in \IZ [/mm] die folgenden Aussagen gelten:

0*x=0
x*1 = x
1*x = x
(x+y)*z=xz + yz
(-x)y = -(xy)
xy = yx
x(y+z)=xy + xz
(xy)z = x(yz)

Wir haben schon Ansätze von anderen leuten gesehen, die das ganze über vollständige Induktion gemacht haben, aber x,y und z sind ja [mm] \in \IZ [/mm] deswegen kann man das ja nicht machen, oder? Wenn ja wo ist der Inudktionsanfang zu setzen? Wäre schön, wenn ihr ne Lösung hättet.

MfG Andi

        
Bezug
Aufgabe zu Ringen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:59 Do 02.12.2004
Autor: Marc

Hallo DerMathematiker,

> Die abelsche Gruppe [mm](\IZ,+)[/mm] der ganzen Zahlen wurde
> konstruiert. [mm]\IZ[/mm] wird nun wie folgt mit einer
> Multiplikation ausgesattet. Man setzt für alle x [mm]\in \IZ. [/mm]
>  
>
> x*0 :=0
>  x*(y+1):=x*y + x [mm]\forall[/mm] y [mm]\in \IN[/mm] mit der 0
>  und
> x*(-y):=-(x*y) [mm]\forall[/mm] y [mm]\in \IN. [/mm]

Wohlgemerkt: [mm] $y\in\red{\IN}$, [/mm] s.u.
  

> Zeigen Sie, dass [mm](\IZ,[/mm] + ,*) ein kommutativer Ring ist,
> dessen neutrales Element bzgl. der Multiplikation die 1
> ist. Zeigen Sie dazu, dass für beliebige x,y und z [mm]\in \IZ[/mm]
> die folgenden Aussagen gelten:
>  
> 0*x=0
>  x*1 = x
>  1*x = x
>  (x+y)*z=xz + yz
>  (-x)y = -(xy)
>  xy = yx
>  x(y+z)=xy + xz
>  (xy)z = x(yz)
>  
> Wir haben schon Ansätze von anderen leuten gesehen, die das
> ganze über vollständige Induktion gemacht haben, aber x,y
> und z sind ja [mm]\in \IZ[/mm] deswegen kann man das ja nicht
> machen, oder? Wenn ja wo ist der Inudktionsanfang zu
> setzen? Wäre schön, wenn ihr ne Lösung hättet.

Du mußt dieselben Fallunterscheidungen machen, wie in der Definition.

Zum Beispiel für (x+y)*z=xz + yz:

Per vollständiger Induktion zeigst du nun die Gleichheit für [mm] $z\in\IN_0$ [/mm]

I.A.: $z=0$ ... [ok]
I.V.: Gleichheit gilt für ein [mm] $z\in\IN_0$ [/mm]
I.S.: Gleichheit gilt auch für z+1
[mm] $(x+y)*(z+1)\stackrel{def.}{=}(x+y)*z+(x+y)\stackrel{I.V.}{=}xz+yz+(x+y)=xz+x+yz+y=\stackrel{I.V.}{=}x*(z+1)+y*(z+1)$ [/mm]

Dass die Gleichheit auch für $z<0$ gilt, dürfte jetzt kein Problem mehr sein zu zeigen.

Viele Grüße,
Marc


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]