matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFourier-TransformationAufgabe richtig? Fouriertransf
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Fourier-Transformation" - Aufgabe richtig? Fouriertransf
Aufgabe richtig? Fouriertransf < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe richtig? Fouriertransf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:52 Mi 23.03.2016
Autor: elektroalgebra93

Aufgabe
Funktion s(t):
s(t)= -a * rect(t+ T/2) + a * rect(t-T/2)
mit T=1

-Bestimmung der Bildfunktion F(w) durch Anwendung des Fourierintegrals
-Bestimmung der Bildfunktion F(w) durch Anwendung der Korrespondenzen und Sätze


Guten Tag ,

Ich habe die Aufgabe gelöst, bin mir jedoch unsicher ob Sie richtig ist. Wäre nett wenn jemand bitte drüber schauen könnte.
Ich habe meine Lösungswege als Bilder hochgeladen, hoffe das geht so in Ordnung :)

über Fourier integral:
http://fs5.directupload.net/images/160323/f2rnxaet.jpg

über Korrespondenzen und Sätze: (ich habe den verschiebungssatz angewendet)
http://fs5.directupload.net/images/160323/ldjb9tdz.jpg

Vielen dank
Gruss



        
Bezug
Aufgabe richtig? Fouriertransf: Zu Teil a)
Status: (Antwort) fertig Status 
Datum: 19:47 Mi 23.03.2016
Autor: Infinit

Hallo elektroalgebra93,
den ersten Berechnungsweg über die direkte Berechnung des Fourierintegrals habe ich mir mal angeschaut. In der Umformung von der drittletzten zur zweitletzten Zeile taucht im ersten Term ein Minuszeichen auf, das da nicht hingehört. Wenn ich dann weiterrechne, bleibe bitte im Omega-Bereich, dann bekomme ich:
[mm] F(j \omega) = \bruch{2a}{j \omega} - \bruch{2a}{j \omega} \cdot \cos (\omega) [/mm]
Soviel erst mal zu dieser Rechnung.
Viele Grüße,
Infinit

Bezug
                
Bezug
Aufgabe richtig? Fouriertransf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:56 Do 24.03.2016
Autor: elektroalgebra93

N'abend Infinit,

Oh ja, dieses Minus hat sich wohl alleine gefühlt und hat sich einfach so reingeschleicht. Danke für den Tipp.
ABER, ist es denn jetzt richtig? Denn ich bekomme bei beiden Verfahren nicht das gleiche Ergebnis raus.
Ich habe bei der Fourier methode das Ergebnis noch bisschen umgeschrieben:
[mm] \bruch{2a}{j2*pi*f} [/mm] + [mm] \bruch{2a}{j2*pi*f} [/mm] * cos(2pi*f)

[mm] \bruch{2a}{j2*pi*f} [/mm] * (1-cos(2*pi*f))

Und bei der Methode mittels Korrespondenzen bekomme ich raus:
[mm] \bruch{-a}{pi*f} [/mm] * sin(2*pi*f)

Liebe Grüsse, danke.

Bezug
                        
Bezug
Aufgabe richtig? Fouriertransf: Fast richtig
Status: (Antwort) fertig Status 
Datum: 11:07 Fr 25.03.2016
Autor: Infinit

Hallo elektroalgebra93,
im zweiten Lösungsweg sind die Sachen noch bis zur drittletzten Zeile richtig, danach aber nicht mehr. Das Minuszeichen zwischen den e-Funktionen deutet doch auf eine Substitution mit Hilfe des Sinus hin, demzufolge musst Du die rechte Seite mit dem Bruch [mm] \bruch{2j}{2j} [/mm] erweitern. Dann steht da:
[mm] -a \bruch{\sin( \pi f)}{\pi f} \cdot 2 j \cdot (\bruch{e^{j \pi f} - e^{-j \pi f}}{2j}) [/mm]
was dann den Sinus reinbringt als
[mm] -a \bruch{\sin( \pi f)}{\pi f} \cdot 2 j \cdot \sin (\pi f) [/mm]
oder als Form der Kreisfrequenz, wonach ja gefragt war,
[mm] -2 j a \cdot{\bruch{\sin(\bruch{\omega}{2})}{\bruch{\omega}{2}} \cdot \sin (\bruch{\omega}{2}) [/mm]
Jetzt kommen die trigonometrischen Umformungen für das Quadrat einer Sinusfunktion mit rein und da tauchen ein Gleichanteil und ein doppeltfrequenter Cosinus auf, das Ganze noch multipliziert mit 1/2:
[mm] \bruch{-4 a j}{\omega} \cdot \bruch{1}{2} (1-\cos \omega) [/mm]
Noch ein bisschen umformen und Du kannst das Ergebnis mit dem aus der ersten Rechnung vergleichen
[mm] \bruch{-2 a j}{\omega} + \bruch{2 a j}{\omega} \cos \omega [/mm]
Einen Schritt noch mit [mm] \bruch{1}{j} = -j [/mm] und dann steht da
[mm] \bruch{2 a}{ j \omega} - \bruch{2 a }{ j \omega} \cos \omega [/mm]
Das sieht doch gut aus, oder?

Viele Grüße,
Infinit

Bezug
                                
Bezug
Aufgabe richtig? Fouriertransf: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:37 Fr 25.03.2016
Autor: elektroalgebra93

Hallo Infinit,

WOW, Super vielen dank für deine Tolle Hilfe. :)

Frohe Ostern.

Gruss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]