Aufgabe #99 (SpaMO),(?) < MO andere Länder < Wettbewerbe < Schule < Mathe < Vorhilfe
|
Status: |
(Übungsaufgabe) Übungsaufgabe | Datum: | 11:55 So 18.09.2005 | Autor: | Hanno |
Hallo an alle!
Jeder Punkt in der Eben ist mit einer von drei Farben gefärbt. Ist es stets möglich, zwei gleichfarbige Punkte zu finden, deren Abstand zueinander 1 ist?
Liebe Grüße,
Hanno
|
|
|
|
Hallo Hanno,
Ich nehme einen beliebigen Punkt M der Ebene mit der Farbe A. Nun ziehe ich einen Kreis um M mit Radius 1. Alle Punkte dieses Kreises sind nun von A verschieden.
Nun wählt man zwei Punkte auf dem Kreis mit Abstand 1. Diese müssen dann untereinander verschiedene Farben haben. Der eine Punkt P habe die Farbe B und andere Punkt Q habe die Farbe C.
Betrachtet man nun das gleichseitige Dreieck über PQ, dessen dritte Ecke nicht M sei, sondern ein Punkt S, so muss S die Farbe A besitzen.
Überträgt man diese Konstruktion für alle Endpunkte P und Q von Sehnen der Länge 1 auf den Kreis um M, so erhällt man einen sicherlich einfarbigen geometrischen Ort aller Punkte S (alle haben die Farbe A), der seinerseits offensichtlich ebenfalls ein Kreis um M mit Radius [mm]1 + \wurzel{3}/2[/mm] ist.
Dieser einfarbige Kreis besitzt aber sicherlich eine Sehne der Länge 1 mit Endpunkten F und G, die dann ihrerseits zwei gleichfarbige Punkte mit Abstand 1 sind.
Man sieht also, dass in jedem Fall (die trivialen Fälle habe ich nicht ausgeführt, wie z.B. dass ein Punkt des Kreises um M die Farbe A habe, etc.) stets zwei gleichfarbige Punkte mit Abstand 1 existieren.
Gruß Samuel
P.S. Nachdem dies die #99 Übungsaufgabe ist, bin ich schon jetzt gespannt, was du uns als #100 "Jubiläums-Aufgabe" präsentierst
|
|
|
|
|
Hallo Samuel,
super Lösung! Der Radius für den Kreis mit Farbe A ist meiner Meinung nach [mm] \wurzel{3}, [/mm] aber das ändert nichts.
Ich habs selber probiert, mit der gleichen Grundidee, aber ich habe dann verschiedene hexagonale Farb-Gitter konstruiert und nachgewiesen, dass sie gemeinsame Punkte haben müssen: gegenüber Deiner Lösung total kompliziert!
Glückwunsch, Richard
|
|
|
|