matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathematik-WettbewerbeAufgabe #83 (IMC),(Alg)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathematik-Wettbewerbe" - Aufgabe #83 (IMC),(Alg)
Aufgabe #83 (IMC),(Alg) < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe #83 (IMC),(Alg): Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 19:40 Sa 30.07.2005
Autor: Hanno

Hallo an alle!

Es sei $R$ ein Ring der Charakteristik $0$. Ferner seien [mm] $e,f,g\in [/mm] R$ mit $e+f+g=0$ und [mm] $e^2=e, f^2=f, g^2=g$. [/mm] Man beweise, dass dann $e=f=g=0$ folgt.


Liebe Grüße,
Hanno

        
Bezug
Aufgabe #83 (IMC),(Alg): Beweis
Status: (Frage) beantwortet Status 
Datum: 15:11 Fr 12.08.2005
Autor: Toellner

Hallo Hanno,

dass der Ring die Charakteristik 0 hat heißt, dass er nullteilerfrei ist, also ab = 0 nur für a=0 oder b=0.
Aus e² = e  folgt  0 = e² - e  =  e(e-1)  und dami ist  e = 0  oder e = 1.
Das gilt für f und g genauso, also kann e + f + g = 0 nur gelten, wenn alle drei 0 sind.

Gruß, Richard

Bezug
                
Bezug
Aufgabe #83 (IMC),(Alg): Nullteilerfrei?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 12.08.2005
Autor: Toellner

Hallo nochmal,

grad kommen mir Zweifel, ob Charakteristik 0 die Nullteilerfreiheit einschließt!? Oder heißt das bloß, dass die ganzen Zahlen einem Teilring isomorph sind?
Bin immer noch im Urlaub und habe nix dabei...

Gruß Richard

Bezug
                
Bezug
Aufgabe #83 (IMC),(Alg): Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Fr 12.08.2005
Autor: Stefan

Hallo Richard!

Ringe der Charakteristik $0$ müssen leider nicht nullteilerfrei sein, wie das Beispiel [mm] $R:=\IZ \times \IZ$ [/mm] zeigt.

Allerdings weiß ich leider auch nicht, wie man díe Aufgabe stattdessen lösen könnte. Ich denke aber mal darüber nach jetzt... :-)

Viele Grüße
Stefan



Bezug
        
Bezug
Aufgabe #83 (IMC),(Alg): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 Fr 12.08.2005
Autor: Stefan

Lieber Hanno!

Es gilt:

[mm] $e=e^2 [/mm] = [mm] (-(f+g))^2 [/mm] = [mm] f^2 [/mm] + fg + gf + [mm] g^2 [/mm] = fg + gf + f + g = fg + gf -e$,

also:

(1) $2e = fg+gf$.

Weiter erhalten wir:

$fg-gf$

$= f^2g + fgf - fgf - [mm] gf^2$ [/mm]

$= f(fg+gf) - (fg+gf)f$

[mm] $\stackrel{(1)}{=} [/mm] f(2e) - (2e)f$

$=2(fe-ef)$

$=2(f(-f-g)-(-f-g)f)$

[mm] $=2(-f^2-fg+f^2+gf)$ [/mm]

$=2(gf-fg)$

$=-2(fg-gf)$,

also:

$3(fg-gf)=0$.

Da der Ring die Charakteristik $0$ hat, folgt:

$fg-gf=0$,

also:

(2) $fg=gf$.

Aus (1) und (2) erhalten wir:

$2fg=2e$,

und somit:

(3) $fg=e$.

Aus $e+f+g=0$ und (3) folgt:

(4) $fg+f+g=0$.

Multiplikation dieser Gleichung (4) von links mit $f$ liefert wegen [mm] $f^2=f$: [/mm]

$fg+f+fg=0$,

also:

(5) $2fg+f=0$.

Multiplikation der Gleichung (4) von rechts mit $g$ liefert wegen [mm] $g^2=g$: [/mm]

$fg+fg+g=0$,

also:

(6) $2fg+g=0$.

Aus (5) und (6) ergibt sich:

$f=g$.

Analog zeigt man: $e=f$, also:

$e=f=g$.

Nun haben wir:

$0=e+f+g=3e$,

also wegen $char(R)=0$:

$e=0$,

und damit:

$0=e=f=g$,

was zu zeigen war.

Schade, dass ich nie an diesem Wettbewerb teilgenommen habe. Ich hätte zwar keine Chance gehabt, aber es macht schon Spaß. :-)

Liebe Grüße
Stefan

Bezug
                
Bezug
Aufgabe #83 (IMC),(Alg): Abkürzung
Status: (Antwort) fertig Status 
Datum: 13:49 So 14.08.2005
Autor: Toellner

Hallo Stefan,

Dein Beweis ist gut!
Vielleicht kannst Du ihn noch verkürzen durch Multiplikation von Gleichung 5 mit g von rechts (statt Gleichung 4):

(5)   2fg  +  f   =  0                              | *g

     2fg² + fg  =  2fg + fg  =  3fg  =  0

also nach "kürzen" von 3 (wegen Charakteristik 0) und Gleichung 3:

       e = fg = 0

Gleiches gilt dann analog für f und g.

Grüße, Richard

Bezug
                        
Bezug
Aufgabe #83 (IMC),(Alg): Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:10 So 14.08.2005
Autor: Stefan

Hallo Richard!

Stimmt, so geht es in der Tat schneller, das hatte ich übersehen. Vielen Dank für den Hinweis und das Durchlesen! :-)

Viele Grüße
Stefan

Bezug
        
Bezug
Aufgabe #83 (IMC),(Alg): Beweisversuch 2
Status: (Frage) beantwortet Status 
Datum: 17:07 Fr 12.08.2005
Autor: Toellner

Hallo,

also, nullteierfrei ist nicht...
Wenn jetzt aber na = 0 für ganze Zahlen n nur bei a = 0 gilt, also wenigstens die Einbettung von Z (n := 1+1+1+1...+1 , das Ganze n mal mit der 1 aus dem Ring, etc) nullteilerfrei ist, dann müsste es gehen:

[mm] e^{n} [/mm] = e , wie man durch Rekursion zeigen kann,
(e + f)² = (-g)² = g² = g = -(e + f), wie aus  e + f + g = 0 und der Vertauschbarkeit von -1 folgt, und
(e + f)² = e + 2ef + f = -(e + f) , dito nach Binomi, also
2ef = -2(e + f) = 2g , wobei man 2 kürzen kann (kein Nullteiler), also
ef = g.
Außerdem ist
(e + f)³ = (-g)³ = -g = e + f  und andrerseits nach "Trinomi"
(e + f)³ = e + 3ef + 3ef + f , Exponenten sind schon weggelassen, also
6ef + (e + f) = e + f
6 ef = 0
ef = 0 , da nach Vorraussetzung 6 kein Nullteiler, und
g = 0.
Das geht analog für e und f genauso.
Sorry, etwas unelegant, und mit Beweislücke:
Sind die ganzen Zahlen tatsächlich keine Nullteiler?

Gruß Richard

Bezug
                
Bezug
Aufgabe #83 (IMC),(Alg): Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Fr 12.08.2005
Autor: Stefan

Hallo Richard!

Leider ist der Beweis immer noch nicht vollständig, da du die Binomischen Formeln ausnutzt und dabei so Dinge wie $ef=fe$, was man erst zeigen müsste (der Ring war ja nicht als kommutativ vorausgesetzt),

Zu deiner Frage mit der Folgerung:

$nx=0 [mm] \quad \mbox{für ein} [/mm] \ n [mm] \in \IZ, \, [/mm]  n [mm] \ne [/mm] 0 [mm] \quad \Rightarrow \quad [/mm] x=0$.

Ja, das kann man machen, weil es sofort aus der Definition der Charakteristik folgt.

Die Charakteristik eines Ringes $R$ ist die kleinste natürliche Zahl $n [mm] \in \IN$ [/mm] mit

$nx=0$ für alle $x [mm] \in [/mm] R$,

und sie wird gleich $0$ gesetzt, wenn es keine solche natürliche Zahl $n$ gibt. Und aus $nx=0$ für bereits ein $x [mm] \in [/mm] R$, $x [mm] \ne [/mm] 0$, kann man folgern, dass auf jeden Fall [mm] $char(R)\ne [/mm] 0$ gilt. So erklärt sich die Folgerung, die du (und ich ebenfalls in meinem Beweis) angewendet hast.

Du müsstest jetzt also nur noch zeigen, dass die drei Elemente miteinander kommutieren.

Oder aber du schaust dir meinen Beweis mal an... :-)

Viele Grüße
Stefan

Bezug
                        
Bezug
Aufgabe #83 (IMC),(Alg): Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:33 So 14.08.2005
Autor: Toellner

Hallo Stefan,

Dank für Deine Hinweise!

Das mit der Kommutativität habe ich übersehen, das hast Du ja in deinem Beweis schon miterledigt mit  gf - fg = 0   (Gleichung 2)...

Wichtig ist die Äquivalenz der Aussagen "es gibt ein n mit n*1 = 0" und "es gibt ein n: für alle a: na = 0". Der Beweis dazu ist mir zwar nicht klar, aber das kann ich ja nachlesen...

Grüße, Richard

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]