matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathematik-WettbewerbeAufgabe #28
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathematik-Wettbewerbe" - Aufgabe #28
Aufgabe #28 < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe #28: Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 15:43 So 27.03.2005
Autor: Hanno

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo an alle!

Es folgen einige Ungleichungen. Ich habe sie selbst noch nicht gelöst, kann ihren Schwierigkeitsgrad also nur schwer beurteilen; aber wir schaffen das schon :-)

Seien $x,y,z$ positive, reelle Zahlen. Zeige, dass
$\prod\left(\frac{x(x+y+z)}{(x+y)(x+z)}\right)^x \leq \left(\frac{\left(\summe yz\right)^2}{4xyz(x+y+z)\right) ^{x+y+z}$
gilt, wobei die Summe und das Produkt zyklisch zu verstehen sind.



Liebe Grüße,
Hanno

        
Bezug
Aufgabe #28: Erledigung einer Altlast
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:43 Sa 28.05.2005
Autor: moudi

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Hanno

Ich habe nach vielen Versuchen diese Aufgabe endlich lösen können.
Dazu beweise ich die folgenden beiden Ungleichungen, die dann zusammengesetzt die Behauptung ergeben:

$ \prod_{\mathrm{zyk}}\left(\frac{x(x+y+z)}{(x+y)(x+z)}\right)^x \leq \left(\frac{x^2(y+z)+y^2(x+z)+z^2(x+y)}{(x+y)(x+z)(y+z)}\right)^{x+y+z} \leq\left(\frac{(xy+xz+yz)^2}{4xyz(x+y+z)\right) ^{x+y+z}$

Zur ersten Ungleichung
Ich verwende wieder das Theorem über konvexe Funktionen aus meiner Antwort zu Aufgabe 30. Ich betrachte die Funktion f(t)=ln(t), dann ist $f''(t)<0$ und die "Gewichte" [mm] $\lambda_1=\frac{x}{x+y+z}$, $\lambda_2=\frac{y}{x+y+z}$, $\lambda_3=\frac{z}{x+y+z}$, [/mm] sowie die Argumente [mm] $t_1=x(y+z)$, $t_2=y(x+z)$, $t_3=z(x+y)$. [/mm]

Wegen [mm] $\sum_{i}\lambda_i f(t_i)\leq f(\sum_i \lambda_i t_i)$ [/mm] folgt
[mm] $\sum_{\mathtm{zyk}}\frac{x}{x+y+z}\ln(x(y+z)) \leq \ln\left(\frac{x^2(y+z)+y^2(x+z)+z^2(x+y)}{x+y+z}\right)$ [/mm]

Multipliziert man diese Ungleichung mit (x+y+z) und exponiert sie anschliessend, so erhält man
[mm] $\prod_{\mathtm{zyk}}(x(y+z))^x \leq \left(\frac{x^2(y+z)+y^2(x+z)+z^2(x+y)}{x+y+z}\right)^{x+y+z}$ [/mm]

Jetzt multipliziert man noch mit [mm] $\left(\frac{x+y+z}{(x+y)(x+z)(y+z)}\right)^{x+y+z}= \prod_{\mathtm{zyk}}\left(\frac{x+y+z}{(x+y)(x+z)(y+z)}\right)^{x}$ [/mm] und man erhält

[mm] $\prod_{\mathtm{zyk}}\left(\frac{x(x+y+z)}{(x+y)(x+z)}\right)^{x}\leq \left(\frac{x^2(y+z)+y^2(x+z)+z^2(x+y)}{(x+y)(x+z)(y+z)}\right)^{x+y+z}$ [/mm]
die gewünschte erste Ungleichung.


Zur zweiten Ungleichung
Der Exponent x+y+z verändert die Ungleichung nicht, deshalb genügt es

[mm] $\frac{x^2(y+z)+y^2(x+z)+z^2(x+y)}{(x+y)(x+z)(y+z)} \leq \frac{(xy+xz+yz)^2}{4xyz(x+y+z)}$ [/mm]

zu zeigen. Man sieht dass jede Permutation der Variablen x,y,z die Ungleichung invariant lässt, deshalb darf man [mm] $x\leq y\leq [/mm] z$ annehmen.

Multipliziert man die Ungleichung mit ihren Nennern multipliziert alles aus und bringt alles auf die rechte Seite, so erhält man (CAS sei dank) die äquivalente Ungleichung
[mm] $\sum_{\mathtm{zyk}}x^4y^3+x^3y^4-x^4y^2z-x^2y^4z-2x^3y^3z+x^3y^2z^2+x^2y^3z^2 \geq [/mm] 0$

Dies lässt sich faktorisieren zu
[mm] $\sum_{\mathtm{zyk}}x^2y^2(x+y)(z-x)(z-y)\geq [/mm] 0$ oder ausgeschrieben

[mm] $x^2y^2(x+y)(z-x)(z-y)+ y^2z^2(y+z)\underbrace{(x-y)(x-z)}_{(y-x)(z-x)}+ x^2z^2(x+z)\underbrace{(y-z)}_{-(z-y)}(y-x)\geq [/mm] 0$

Man sieht, nur der letzte Summand ist negativ, wenn [mm] $x\leq y\leq [/mm] z$, deshalb fasse ich die letzten beiden Summande zusammen und klammere [mm] $z^2(y-x)$ [/mm] aus
[mm] $x^2y^2(x+y)(z-x)(z-y)+ z^2(y-x)\underbrace{\left(y^2(y+z)(z-x)-x^2(x+z)(z-y)\right)}_{\mathtm{positiv!}}$ [/mm]

Man sieht, dass die Ungleichung gültig ist.

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]