matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesAufgabe3
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Aufgabe3
Aufgabe3 < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:51 So 22.05.2011
Autor: antoniolopez20

Aufgabe
Aufgabe 3
a) Zeigen Sie, dass die Abbildung f : ℝ²--> ℝ² mit f (x , y ) = (x + 2 y , x − 2 y ) bijektiv
ist und bestimmen Sie ihre Umkehrabbildung.

Hallo,

Also so eine Funktion wie sie oben steht sehe ich zum ersten Mal.

wie kann ich dieses "," deuten?

Sind das zwei Funktionen?

Eine weitere Frage zur Bijektivität.

Jedes Element aus x hat genau einen y wert und jedes y-wert hat genau einen x Wert ist das so richtig formuliert.


Danke

        
Bezug
Aufgabe3: Antwort
Status: (Antwort) fertig Status 
Datum: 22:57 So 22.05.2011
Autor: kamaleonti

Moin,
> Aufgabe 3
>  a) Zeigen Sie, dass die Abbildung f : [mm] \IR^2\to \IR^2 [/mm] mit f(x,y)=(x+2y,x−2y) bijektiv  ist und bestimmen Sie ihre Umkehrabbildung.
>  Hallo,
>  
> Also so eine Funktion wie sie oben steht sehe ich zum
> ersten Mal.
>  
> wie kann ich dieses "," deuten?

Es ist eine Funktion, die in den [mm] \IR^2 [/mm] abbildet. Entsprechend hat jedes Bild eines Vektors zwei Komponenten.

>  
> Sind das zwei Funktionen?

Es sind zwei Komponentenfunktionen.

>  
> Eine weitere Frage zur Bijektivität.
>  
> Jedes Element aus x hat genau einen y wert und jedes y-wert
> hat genau einen x Wert ist das so richtig formuliert.

Du meinst das Richtige, aber exakt formuliert ist das nicht.

f: [mm] X\to [/mm] Y ist bijektiv: Zu jedem [mm] x\in [/mm] X gibt es genau ein [mm] y\in [/mm] Y mit f(x)=y und zu jedem [mm] y\in [/mm] Y gibt es genau ein [mm] x\in [/mm] X mit [mm] f^{-1}(y)=x [/mm]

>  
>
> Danke  

LG

Bezug
                
Bezug
Aufgabe3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:09 So 22.05.2011
Autor: antoniolopez20

Danke für die schnelle Antwort.

Ich weiß wie man die Umkehrfunktion einer "normalen" funktion bildet.

Man vertauscht x undy und  lößt es nach y auf.

Ich weiß hier nicht wie ich damit rechnen kann, genauer gesagt die Umkehrfunktion bilden kann, kann mir jemand tipps geben?

Bezug
                        
Bezug
Aufgabe3: Antwort
Status: (Antwort) fertig Status 
Datum: 23:14 So 22.05.2011
Autor: kamaleonti


> Danke für die schnelle Antwort.
>  
> Ich weiß wie man die Umkehrfunktion einer "normalen"
> funktion bildet.
>  
> Man vertauscht x undy und  lößt es nach y auf.
>  
> Ich weiß hier nicht wie ich damit rechnen kann, genauer
> gesagt die Umkehrfunktion bilden kann, kann mir jemand
> tipps geben?

Tipps:

(1)              [mm] \frac{(x+2y)+(x-2y)}{2}=x [/mm]

(2)              [mm] \frac{(x+2y)-(x-2y)}{4}=y [/mm]

LG

Bezug
                                
Bezug
Aufgabe3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:57 So 22.05.2011
Autor: antoniolopez20

Vielen Dank für deine Tipps

Leider weiß ich immer noch nicht weiter, wie kommst du auf die Zahlen?

Hast du dir einfach überlegt was du mit (x+2y) und (x-2y) damit du einmal auf x und einmal auf y kommst?



Bezug
                                        
Bezug
Aufgabe3: Antwort
Status: (Antwort) fertig Status 
Datum: 00:03 Mo 23.05.2011
Autor: kamaleonti


> Vielen Dank für deine Tipps
>  
> Leider weiß ich immer noch nicht weiter, wie kommst du auf
> die Zahlen?
>  
> Hast du dir einfach überlegt was du mit (x+2y) und (x-2y)
> damit du einmal auf x und einmal auf y kommst?

Richtig. Genau das brauchst du ja für die Umkehrfunktion g, die die Abbildung f wieder rückgängig machen soll. Du musst nur noch die Funktion hinschreiben:

            $f(x,y)=(x+2y,x-2y)$

            [mm] $g(x,y)=\left(\frac{x+y}{2}, \frac{x-y}{4}\right)$ [/mm]

>  
>  

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]