matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisAuf- ableitung Funktionsterm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Auf- ableitung Funktionsterm
Auf- ableitung Funktionsterm < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auf- ableitung Funktionsterm: Frage
Status: (Frage) beantwortet Status 
Datum: 19:49 Mo 25.10.2004
Autor: Luziverares

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo.
Ich habe hier einen Therm mit

[mm]V(t)=V0[1/(1+V0*t/L0)][/mm]

Umgeformt ist das
[mm]V(t)=V0[1+(V0*t/L0)]^-1[/mm]
Nur wie leite ich nun den gesamttherm auf bzw. ab?
Mfg S.Port

        
Bezug
Auf- ableitung Funktionsterm: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Mo 25.10.2004
Autor: Marc

Hallo Luziverares,

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Hallo.
>  Ich habe hier einen Therm mit
>  
> [mm]V(t)=V0[1/(1+V0*t/L0)][/mm]

Du meinst [mm] $V(t)=V_0*\bruch{1}{1+V_0*\bruch{t}{L_0}}$ [/mm]
  

> Umgeformt ist das
>  [mm]V(t)=V0[1+(V0*t/L0)]^-1[/mm]
>  Nur wie leite ich nun den gesamttherm auf bzw. ab?

[mm] $V(t)=V_0*\left(1+V_0*\bruch{t}{L_0}\right)^{-1}=V_0*\left(1+t*\bruch{V_0}{L_0}\right)^{-1}$ [/mm]

Für die Ableitung ist die MBKettenregel anzuwenden:
Die innere Funktion ist [mm] $1+t*\bruch{V_0}{L_0}$, [/mm] ihre Ableitung ist [mm] $\bruch{V_0}{L_0}$. [/mm]
Die äußere Funktion ist [mm] $V_0*x^{-1}$, [/mm] ihre Ableitung ist [mm] $V_0*(-1)*x^{-2}$, [/mm]
die Ableitung der zusammengesetzten Funktion ist
[mm] $V'(t)=\bruch{V_0}{L_0}*V_0*(-1)*\left(1+t*\bruch{V_0}{L_0}\right)^{-2}$ [/mm]


Stammfunktionen zu finden, ist von Natur aus etwas komplizierter, aber in diesem einfachen Fall kann man sie sehr schnell "erraten":

V(t) hat ja die Form [mm] $f(x)=a*(b+t*c)^{-1}$ [/mm]

Nun ist eine Stammfunktion zu [mm] $x^{-1}$ [/mm] die Funktion [mm] $\ln [/mm] x$, deswegen setze ich als Stammfunktion zu f an mit [mm] $a*\ln\left( b+t*c\right)$. [/mm]
Wenn man dies (mit der Kettenregel) ableitet, taucht ein "c*" auf (die innere Ableitung), was aber durch eine vorherige Multplikation mit [mm] $\bruch{1}{c}$ [/mm] ausgeglichen werden kann:

[mm] $F(x)=\bruch{1}{c}*a*\ln\left( b+t*c\right)$ [/mm]

Jetzt setzt du noch die passenden Konstanten ein, und du hast eine Stammfunkton zu V.

Ich hoffe, meine fast unmathematischen Überlegungen helfen dir trotzdem weiter.

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]