Asymptotische Stabilität < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:39 Do 25.08.2011 | Autor: | Harris |
Aufgabe | [mm] A:=\pmat{ -5 & 0 & 3 \\ 0 & -1 & 0 \\ 3 & 0 & -5}
[/mm]
a) Zeigen Sie, dass die Ruhelage 0 für das System x'=Ax stabil ist.
b) Weiterhin sei [mm] $b:\IR\rightarrow\IR^3$ [/mm] stetig. Zeigen Sie, dass jede Lösung $y$ der Gleichung $y'=Ay+b(t)$ asymptotisch stabil ist, indem Sie zeigen, dass für zwei Lösungen $y$ und $z$ immer gilt:
[mm] lim_{t\rightarrow\infty} \parallel z(t)-y(t)\parallel=0 [/mm] |
Hi!
Der erste Teil ist klar, da kommt als allgemeine Lösung
[mm] \lambda_1\vektor{-1 \\ 0 \\ 1}exp(-8t)+\lambda_2\vektor{1 \\ 0 \\ 1}exp(-2t)+\lambda_3\vektor{0 \\ 1 \\ 0}exp(-t)
[/mm]
raus und da die Matrix nur Eigenwerte mit negativem Realteil hat, ist die Lösung asymptotisch stabil ist.
Aber was ist bei der zweiten? Ich habe da leider gar keinen Ansatz. Bezüglich welcher Norm betrachtet man das denn überhaupt? Supremumsnorm?
Grüße, Harris
|
|
|
|
Hi Harris,
schau dir mal an welche Dgl. die Funktion [mm]x=z-y[/mm] löst, wobei [mm]y,\ z[/mm] Lösungen der Dgl. [mm]y'=Ay+b(t)[/mm] sind.
Beste Grüße
Spunk
|
|
|
|