matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenAsymptoten
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Rationale Funktionen" - Asymptoten
Asymptoten < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Asymptoten: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:45 Di 19.04.2005
Autor: MartinF

Hallo! Ich habe etwas Probleme mit den Asymptoten und weiß nicht mehr viel damit anzufangen.

Kann mir jemand die Bestimmung anhand einer Aufgabe mal detailliert erklären?

f(x)=2/3x

Wäre echt nett!



        
Bezug
Asymptoten: x gegen 0, x gegen unendl
Status: (Antwort) fertig Status 
Datum: 17:23 Di 19.04.2005
Autor: leduart

Hallo
> Kann mir jemand die Bestimmung anhand einer Aufgabe mal
> detailliert erklären?
>  
> f(x)=2/3x

Assymptoten sind Geraden (manchmal auch Kurven), die eine Funktion beliebig gut annähert, aber nie erreicht.
Bei rationalen Funktionen muss man die 2 fälle ansehen, dass der Nenner gegen 0 geht, bei Zähler±0
und dass der Nenner gegen unendlich geht.
für  f(x)=2/3x geht für x gegen 0 der Nenner gegen 0. f(x) gegen [mm] \infty [/mm] d.h. die Gerade x=0 ist Assymptote hier auch Polstelle (Assymptoten, die parallel zur y- Achse sind heissen auch Polstellen
für [mm] x-->\infty [/mm] geht f(x )--> 0. d.h. y=0 ist Assymptote.
Anderes Beispiel f(x)= [mm] \bruch{2x^{2}+1}{x-1} [/mm] Bei x-->1 Nenner---> 0 [mm] f(x)-->\infty [/mm] x=1 ist Assymptote, von links geht [mm] f(x)-->-\infty [/mm] von rechts gegen [mm] +\infty. [/mm]
für x--> [mm] \pm\infty [/mm] gehen Zähler und Nenner gegen [mm] \infty. [/mm] Dann macht man Polynomdivision für x±1 gilt:
[mm] \bruch{2x^{2}+1}{x-1}=2x+2+ \bruch{3}{x-1} [/mm] für x--> [mm] \pm \infty [/mm] geht  [mm] \bruch{3}{x-1} [/mm] -->0
d.h. die gerade y=2x+2 ist Assymptote.
Versuchs mal mit  [mm] \bruch{3x^{3}+1}{x^{2}-1} [/mm]  du solltest 3 Assymptoten finden. 2 davon heißen auch Polstellen.
Gruss leduart

Bezug
                
Bezug
Asymptoten: Frage
Status: (Frage) beantwortet Status 
Datum: 18:43 Di 19.04.2005
Autor: MartinF

Kann mir jemand noch mal den letzten Schritt mit der Polynomdivision detailliert erklären? Was teile ich denn durch was?

Die 2 Polstellen zur anderen müssten 1 und -1 sein. Richtig?

Bezug
                        
Bezug
Asymptoten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:14 Di 19.04.2005
Autor: Max

Hallo Martin,

> Kann mir jemand noch mal den letzten Schritt mit der
> Polynomdivision detailliert erklären? Was teile ich denn
> durch was?

Wenn du waagerechte oder schräge MBAsymptoten (gibt es nur für $x [mm] \to \pm\infty$) [/mm] suchst, musst du bei gebrochen rationalen Funktionen [mm] $f(x)=\frac{z(x)}{n(x)}$ [/mm]  einfach Polynomdivision auf $z(x):n(x)$ anwenden, wobei du dann einen Rest bekommen wirst. Der ganzrationale Anteil von $f$ ist dann die Asymptote, der Rest verschwindet für [mm] $x\to\pm\infty$. [/mm]

  

> Die 2 Polstellen zur anderen müssten 1 und -1 sein.
> Richtig?

Ja, die Polstellen liegen bei $1$ und $-1$. Damit hat die Funktion noch die senkrechten Asymptoten $x=1$ und $x=-1$.

Gruß Max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]