matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteAsymptoten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Grenzwerte" - Asymptoten
Asymptoten < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Asymptoten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 Mo 28.01.2008
Autor: Domestic

Aufgabe
[mm] \bruch {2x^2}{2+x^2} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Könnt ihr mir itte sagen, wie ich die Asymptoten dieser/eier Funktion berechne.

Gruß Domestic

        
Bezug
Asymptoten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Mo 28.01.2008
Autor: Domestic

Laut Musterlösung gibt es eine waagerechte Asymptote bei y=2..

allerdings:

[mm] \limes_{x\rightarrow\infty}\bruch{2x^2}{2+x^2} [/mm]

[mm] =\bruch {2*\infty}{2+\infty} [/mm]

Seh ich das falsch?



Bezug
                
Bezug
Asymptoten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Mo 28.01.2008
Autor: Teufel

Hallo!

Ja, Polynomdivision führt auch sicher zum Ziel, aber du kannst auch x² in Zähler und Nenner ausklammern und wegkürzen.

Bezug
                        
Bezug
Asymptoten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:55 Mo 28.01.2008
Autor: Domestic

Und woran sehe ich ob es ne waagerechte, senkrechte oder schiefe Asymptote ist?

Bezug
                                
Bezug
Asymptoten: verschiedene Asymptoten
Status: (Antwort) fertig Status 
Datum: 18:00 Mo 28.01.2008
Autor: Loddar

Hallo Domestic!


Betrachte das Ergebnis der MBPolynomdivision. Verbleibt vor dem gebrochen-rationalen Rest nur ein konstanter Wert (wie es hier sein wird), handelt es sich um eine waagerechte Asymptote.

Schräge Asymptoten liegen vor, wenn der ganz-rationale Term die Form $a*x+b_$ hat.

Senkrechte Asymptoten liegen an Polstellen vor.


Gruß
Loddar


Bezug
        
Bezug
Asymptoten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Mo 28.01.2008
Autor: Sternchen0707

Du musst die Polynomdivision anwenden.
Die ganz rationale Zahl, die du am Ende erhältst ist deine Asymptote.
In diesem Fall y=2

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]