matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenAsymptote bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Asymptote bestimmen
Asymptote bestimmen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Asymptote bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:52 Mo 28.07.2014
Autor: needmath

Aufgabe
ich will die Asymptote von f(x) bestimmen

[mm] f(x)=\bruch{3x^3-2x^2-5x+4}{x^2-1} [/mm]

allgemeine frage: die asymptote einer funktion bestimme ich immer wenn ich die funktion gegen [mm] \infty [/mm] laufen lasse richtig?

[mm] f(x)=\bruch{3x^3-2x^2-5x+4}{x^2-1}=\bruch{x^2(3x-2-\bruch{5}{x}+\bruch{4}{x^2})}{x^2(1-\bruch{1}{x^2})} [/mm]

[mm] \limes_{x\rightarrow\infty} \bruch{3x-2-\bruch{5}{x}+\bruch{4}{x^2}}{1-\bruch{1}{x^2}}=3x-2 [/mm]

3x-2 ist die asymptote

ist die lösung richtig? ein kollege von mir hat gesagt ich muss die polynomdivision anwenden, aber kann ich das auch wie oben machen?

        
Bezug
Asymptote bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:11 Mo 28.07.2014
Autor: Richie1401

Hallo,

> ich will die Asymptote von f(x) bestimmen
>  
> [mm]f(x)=\bruch{3x^3-2x^2-5x+4}{x^2-1}[/mm]
>  allgemeine frage: die asymptote einer funktion bestimme
> ich immer wenn ich die funktion gegen [mm]\infty[/mm] laufen lasse
> richtig?
>  
> [mm]f(x)=\bruch{3x^3-2x^2-5x+4}{x^2-1}=\bruch{x^2(3x-2-\bruch{5}{x}+\bruch{4}{x^2})}{x^2(1-\bruch{1}{x^2})}[/mm]
>  
> [mm]\limes_{x\rightarrow\infty} \bruch{3x-2-\bruch{5}{x}+\bruch{4}{x^2}}{1-\bruch{1}{x^2}}=3x-2[/mm]

Das ergibt doch gar keinen Sinn. Du willst, dass [mm] x\to\infty. [/mm] Doch dann musst du auch alle x in dem Term beachten. Du wählst dir deine x ja willkürlich aus. Das geht natürlich nicht.

>  
> 3x-2 ist die asymptote

Das stimmt, auch wenn das Vorgehen/Notation nicht richtig ist.

>  
> ist die lösung richtig? ein kollege von mir hat gesagt ich
> muss die polynomdivision anwenden, aber kann ich das auch
> wie oben machen?

Die Polynomdivision wäre ne feine Sache. Du bekommst dann zwei Teile: Zum einen die echten Quotienten und eine Restabbildung. Diese ist für dich unwichtig.
Entscheidend ist nur der lineare Anteil des Quotienten.

Bezug
                
Bezug
Asymptote bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:07 Di 29.07.2014
Autor: needmath


> Die Polynomdivision wäre ne feine Sache. Du bekommst dann
> zwei Teile: Zum einen die echten Quotienten und eine
> Restabbildung. Diese ist für dich unwichtig.
>  Entscheidend ist nur der lineare Anteil des Quotienten.

bei schiefen asymptoten ( zählergrad > nennergrad) muss ich also die polynomdivision machen oder kann ich die schiefe asymptote auch anders bestimmen?

übrigens habe ich mich an der vorgehensweise an diesem video orientiert (siehe 3:25 min)

https://www.youtube.com/watch?v=khD2jPCsdGI



Bezug
                        
Bezug
Asymptote bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:56 Di 29.07.2014
Autor: rmix22


> > Die Polynomdivision wäre ne feine Sache. Du bekommst dann
> > zwei Teile: Zum einen die echten Quotienten und eine
> > Restabbildung. Diese ist für dich unwichtig.
>  >  Entscheidend ist nur der lineare Anteil des Quotienten.
>
> bei schiefen asymptoten ( zählergrad > nennergrad) muss
> ich also die polynomdivision machen oder kann ich die
> schiefe asymptote auch anders bestimmen?
>  

Du hast ja im ersten Posting die Asymptote anders, nämlich durch eine Grenzwertüberlegung bestimmt und das war OK. Richie hat deine Notation moniert.
Im gegebenen Beispiel wäre noch zu beachten, dass bei x=1 eine hebbare Unstetigkeitsstelle vorliegt und bei x=-1 eine senkrechte Asymptote.

RMix



Bezug
        
Bezug
Asymptote bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:42 Di 29.07.2014
Autor: M.Rex

Hallo

> ich will die Asymptote von f(x) bestimmen

>

> [mm]f(x)=\bruch{3x^3-2x^2-5x+4}{x^2-1}[/mm]
> allgemeine frage: die asymptote einer funktion bestimme
> ich immer wenn ich die funktion gegen [mm]\infty[/mm] laufen lasse
> richtig?

Das ist korrekt, wie Richie ja schon bestätigt hat.

>

> [mm]f(x)=\bruch{3x^3-2x^2-5x+4}{x^2-1}=\bruch{x^2(3x-2-\bruch{5}{x}+\bruch{4}{x^2})}{x^2(1-\bruch{1}{x^2})}[/mm]

>

> [mm]\limes_{x\rightarrow\infty} \bruch{3x-2-\bruch{5}{x}+\bruch{4}{x^2}}{1-\bruch{1}{x^2}}=3x-2[/mm]

>

> 3x-2 ist die asymptote

Ja, und auch das Notationsproblem ist auch angesprochen worden.

>

> ist die lösung richtig? ein kollege von mir hat gesagt ich
> muss die polynomdivision anwenden, aber kann ich das auch
> wie oben machen?


Der Weg über die Polynomdivision ist sicherlich der meistgenutzte Weg.
Außerdem hilft die Polynomdivision, wenn man von der Funktion noch Ableitungen oder Stammfunktionen bilden soll, das ist über den "Ausdividierten Funktionsterm" meist leichter zu handhaben.

Hier also

[mm] f(x)=\frac{3x^{3}-2x^{2}-5x+4}{x^{2}-1}=3x-2-\frac{2x-2}{x^{2}-1} [/mm]

Alternativ hilft evtl auch der scheibare Umweg über die Linearfaktorisierung
[mm] f(x)=\frac{3x^{3}-2x^{2}-5x+4}{x^{2}-1}=\frac{(x-1)^{2}(3x+4)}{(x-1)(x+1)}=\frac{(x-1)(3x+4)}{x+1}=3x-2-\frac{2}{x+1} [/mm]

Das macht die Polynomdivision einfacher.

Marius


 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]