matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperAssoziative Strukturen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Assoziative Strukturen
Assoziative Strukturen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Assoziative Strukturen: Beweis
Status: (Frage) beantwortet Status 
Datum: 18:56 Do 15.07.2010
Autor: Study1988

Aufgabe
Beweisen Sie.
In einer assoziativen Struktur (M, *) mit neutralem ELement e gilt:
(a^-1)^-1 = a

und
(a *b)^-1 = b^-1 * a^-1, falls a und b invertierbar sind

Ja, das ist leider zwei Beweise, den wir in der Übung so konkret nicht angesprochen haben.
Ich bräuchte da irgendwie mal nen Anfang -.-
Hab mich schon ne ganze Weile dran versucht, also inbesondere an dem ersten, aber irgendwie komm ich nicht drauf :(

Für den zweiten teil hätte ich folgende Lösungsmöglichkeit erarbeitet:

1.
Es ist klar, dass das Inverse von a*b= (a*b)^-1 ist.
Dann versuche ich einfach, ob das, was nach dem "=" steht, ebenfalls das Inverse ist von a*b

Also:
a*b*b^-1*a^-1

= a*a^-1*b*b^-1
= e

q.e.d.
-.- kann man das so machen?

Lg study

        
Bezug
Assoziative Strukturen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Do 15.07.2010
Autor: Teufel

Hi!

Zur 1.)
Du brauchst im wesentlichen, dass das Inverse von a eindeutig bestimmt ist.
Sei also a [mm] \in [/mm] M und [mm] a^{-1} [/mm] das Inverse von a.

Dann ist natürlich [mm] a^{-1}*a=e [/mm] aber andererseits ist auch [mm] (a^{-1})^{-1}*a^{-1}=e [/mm] (wenn man [mm] b:=a^{-1} [/mm] setzt sieht man das deutlicher, [mm] b^{-1}*b [/mm] ist natürlich auch e).

Was folgt dann?

Zur 2.)
Kannst du so machen. Vielleicht auch anmerken, dass das Inverse eindeutig ist und daher wirklich [mm] (ab)^{-1}=b^{-1}a^{-1} [/mm] gelten muss.

[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]