matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisAspharenformel, Wegstreke
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Aspharenformel, Wegstreke
Aspharenformel, Wegstreke < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aspharenformel, Wegstreke: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 Mi 28.07.2004
Autor: brainless

Hallo,

gibt es einen relativ einfachen weg die Wegstrecke vom Scheitelpunkt bis zu einem beliebigen Punkt (in Abhaengigkeit von x und y) auf einer Asphaere zu berechen?

Die Asphaerenformel lautet:

z = [mm] \bruch{ c_{x} * x^{2} + c_{y} * y^{2}}{1 + \wurzel{ 1 - (1 + k_{x}) * c_{x}^{2} * x^{2} - (1 - k_{y}) * c_{y}^{2} * y^{2}}} [/mm]

mit [mm] c_{x} [/mm] = [mm] \bruch{1}{R_{x}} [/mm] und [mm] c_{y} [/mm] = [mm] \bruch{1}{R_{y}} [/mm]
[mm] R_{x,y} [/mm] ist Kruemmungsradius in x- bzw. y-Richtung
[mm] k_{x,y} [/mm] ist konische Konstante in x- bzw, y-Richtung
mit
k = 0 sphaerisches Oberflaecheprofil
k = -1 parabolisches Oberflaecheprofil
k < -1 hyperbolisches Oberflaechenprofil
sonst -> elliptisches Oberflaechenprofil


Ich habe diese Frage in keinem weiteren Forum gestellt


        
Bezug
Aspharenformel, Wegstreke: Asphärenformel, Wegstreke
Status: (Antwort) fertig Status 
Datum: 12:58 Fr 30.07.2004
Autor: Marc

Hallo brainless,

[willkommenmr]

Dann will ich mich mal als ein Unwissender outen ;-)

> gibt es einen relativ einfachen weg die Wegstrecke vom
> Scheitelpunkt bis zu einem beliebigen Punkt (in
> Abhaengigkeit von x und y) auf einer Asphaere zu
> berechen?

Der Scheitelpunkt befindet sich in $(0,0,0)$ und der beliebige Punkt hat die Koordinaten [mm] $(x_0,y_0,z_0)$. [/mm]
Ich nehme mal folgendes an:
Wenn man die gesuchte Wegstrecke in die xy-Ebene (senkrecht, in z-Richtung) projiziert müßte sich eine Strecke/Gerade ergeben, die die folgende Parameterdarstellung hat:

[mm] $\vektor{x\\y\\z}=t*\vektor{x_0\\y_0\\0}$, $t\in[0;1]$ [/mm]

Damit müßte sich die die Wegstrecke auf der Asphäre doch so parametrisieren

[mm] $\gamma:\ \IR\to\IR^3$ [/mm]
[mm]t\mapsto\vektor{x\\y\\z}=\vektor{t*x_0\\t*y_0\\\bruch{ c_{x} * t^2*x_0^2 + c_{y} * t^2*y_0^2}{1 + \wurzel{ 1 - (1 + k_{x}) * c_{x}^{2} * t^2*x_0^2 - (1 - k_{y}) * c_{y}^{2} * t^2*y_0^2}}}[/mm]

und über die Formel

[mm] $L(\gamma)=\integral_0^1 |\gamma'(t)| [/mm] dt$

berechnen lassen.

Zuvor müßte natürlich noch sichergestellt sein, dass meine Parametrisierung stetig und differenzierbar ist.

Ich habe es natürlich nicht weiter verfolgt, aber vielleicht hilft es ja dir oder jemand anderem hier weiter.

Viele Grüße,
Marc


Nachtrag:
[mm] $\gamma(t)$ [/mm]
[mm]=\vektor{t*x_0\\t*y_0\\ \bruch{ t^2*\left( c_x*x_0^2+c_y*y_0^2\right)*\left(1-\wurzel{1-(1+k_x)*c_x^2*t^2*x_0^2-(1-k_y)*c_y^2*t^2*y_0^2}\right)} {1-\left(1-(1+k_x)*c_x^2*t^2*x_0^2-(1-k_y)*c_y^2*t^2*y_0^2\right)}}[/mm]

[mm]=\vektor{t*x_0\\t*y_0\\ \bruch{ t^2*\left( c_x*x_0^2+c_y*y_0^2\right)*\left(1-\wurzel{1-(1+k_x)*c_x^2*t^2*x_0^2-(1-k_y)*c_y^2*t^2*y_0^2}\right)} {t^2*\left((1+k_x)*c_x^2*x_0^2-(1-k_y)*c_y^2*y_0^2\right)}}[/mm]


[mm]=\vektor{t*x_0\\t*y_0\\ \bruch{ \left( c_x*x_0^2+c_y*y_0^2\right)*\left(1-\wurzel{1-(1+k_x)*c_x^2*t^2*x_0^2-(1-k_y)*c_y^2*t^2*y_0^2}\right)} {\left((1+k_x)*c_x^2*x_0^2-(1-k_y)*c_y^2*y_0^2\right)}}[/mm]

Das sieht doch schon ein bisschen freundlicher aus.

Nun setze ich noch: [mm] $A:=(1+k_x)*c_x^2*x_0^2$ [/mm] und [mm] $B:=(1-k_y)*c_y^2*y_0^2$ [/mm]

[mm]=\vektor{t*x_0\\t*y_0\\ \bruch{ \left( c_x*x_0^2+c_y*y_0^2\right)*\left(1-\wurzel{1-A*t^2-B*t^2}\right)} {\left(A-B\right)}}[/mm]


[mm]=\vektor{t*x_0\\t*y_0\\ \bruch{ \left( c_x*x_0^2+c_y*y_0^2\right)*\left(1-\wurzel{1-t^2*(A+B)}\right)} {\left(A-B\right)}}[/mm]

Das lacht einen doch geradezu an :-)

NR: [mm] $\left(1-\wurzel{1-t^2*(A+B)}\right)'=-\bruch{-2t(A+B)}{2*\wurzel{1-t^2*(A+B)}}=\bruch{t(A+B)}{\wurzel{1-t^2*(A+B)}}$ [/mm]

[mm]\gamma'(t)[/mm]
[mm]=\vektor{x_0\\y_0\\ \bruch{ \left( c_x*x_0^2+c_y*y_0^2\right)}{\left(A-B\right)}*\bruch{t(A+B)}{\wurzel{1-t^2*(A+B)}}}[/mm]

Und [mm] $|\gamma'(t)|$ [/mm]

[mm]=\wurzel{x_0^2+y_0^2+\left(\bruch{c_x*x_0^2+c_y*y_0^2}{A-B}*\bruch{t(A+B)}{\wurzel{1-t^2*(A+B)}}\right)^2}[/mm]
[mm]=\wurzel{x_0^2+y_0^2+\left(\bruch{c_x*x_0^2+c_y*y_0^2}{A-B}\right)^2*\bruch{t^2*(A+B)^2}{1-t^2*(A+B)}}[/mm]

Das sieht auf den ersten Blick integrierbar aus...

Bezug
                
Bezug
Aspharenformel, Wegstreke: Asphärenformel, Wegstreke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:55 Mo 02.08.2004
Autor: brainless

Vielen Dank! ... das hilft mir schon sehr viel weiter!

Bezug
                        
Bezug
Aspharenformel, Wegstreke: Asphärenformel, Wegstreke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:11 Mi 04.08.2004
Autor: Marc

Hallo brainless,

> Vielen Dank! ... das hilft mir schon sehr viel weiter!

Huch, das hätte ich ja nicht gedacht, ich hab' ja einfach nur unbekümmert drauf los gerechnet :-)
Aber es freut mich natürlich, und melde dich bitte wieder, falls etwas unklar ist.

Viele Grüße,
Marc




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]