matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikArithmetisches Mittel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Arithmetisches Mittel
Arithmetisches Mittel < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Arithmetisches Mittel: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:50 Mi 30.04.2008
Autor: Denny22

Aufgabe
Eine Schülerin nimmt am Weitsprungturnier teil und muss insgesamt 7 mal springen. Sie springt bei den ersten fünf Sprüngen die Weiten $a$, $b$, $c$, $d$, $e$. Die Sprünge 6 und 7 folgen darauf. Weiter wissen wir, dass der 6. Sprung der schlechteste war. Die Spannweite der Sprünge liegt bei $S$ Metern. Das arithmetische Mittel ist zudem $A$.

Fragen:

1) Wie weit war der 6. Sprung?
2) Wie weit war der 7. Sprung?
3) Wie groß ist der Median?

Hallo an alle!

Kann mir jemand verraten, wie ich die obige Aufgabe löse? Wenn ich die Sprungweiten des 6. bzw. des 7. Sprungs mit $f$ bzw. $g$ bezeichne, dann liefert mir das arithmetische Mittel

[mm] $A=\frac{1\cdot a+1\cdot b+1\cdot c+1\cdot d+1\cdot e+1\cdot f+1\cdot g}{7}$ [/mm]

wobei $f$ und $g$ unbekannt sind. Was liefert mir genau die Spannweite? Muss ich eine Fallunterscheidung machen? 1. Fall: 7. Sprung ist der weiteste Sprung und 2. Fall: 7. Sprung ist nicht der weiteste Sprung? Genauer: Wo bekomme ich die zweite Gleichung her, um $f$ und $g$ eindeutig zu bestimmen?

Ich danke Euch bereits für Eure Hilfe. Gruß

        
Bezug
Arithmetisches Mittel: alle Angaben?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:54 Mi 30.04.2008
Autor: Loddar

Hallo Denny!


Hast Du hier auch alle Angaben gemacht, die Du zu dieser Aufgabe hast?


Gruß
Loddar


Bezug
                
Bezug
Arithmetisches Mittel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:35 Mi 30.04.2008
Autor: Denny22

Ich habe die Aufgabe zwar nicht mehr hier, aber ja. Die Angaben sind vollständig. Ich habe mir die Aufgabe des öfteren durchgelesen und habe keine Ahnung wie ich da rangehen soll. Daher auch meine Idee mit den Fallunterscheidungen. Aber das ist eine Aufgabe aus der 10. Klasse, weswegen ich es mir eine Fallunterscheidung eigentlich nicht vorstellen kann.

Was meinst Du denn, was dort fehlen könnte?

Gruß

Bezug
                        
Bezug
Arithmetisches Mittel: z.B. Zahlenwerte
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:38 Mi 30.04.2008
Autor: Loddar

Hallo Denny!


> Was meinst Du denn, was dort fehlen könnte?

Zum Beispiel doch ein, zwei konkrete Zahlenwerte ...


Gruß
Loddar


Bezug
                                
Bezug
Arithmetisches Mittel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:45 Mi 30.04.2008
Autor: Denny22

Gegeben sind nur die Weiten $a$, $b$, $c$, $d$, $e$, die Spannweite $S$ und das arithmetische Mittel $A$.

Bezug
        
Bezug
Arithmetisches Mittel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Mi 30.04.2008
Autor: leduart

Hallo
welchen Sprung du den weitesten nennst ist egal, da man alle auser dem 6- ten, dem schlechtesten ja willkürlich mit Namen versehen kann!
also S ist die Differenz zw. dem besten und dem Schlechtesten. S=a-f
Das sind aber nicht genug Angaben um die geforderten Informationen zu finden.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]