matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieArithmetik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - Arithmetik
Arithmetik < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Arithmetik: Idee
Status: (Frage) beantwortet Status 
Datum: 00:20 So 13.05.2012
Autor: db60

Aufgabe
1.  [mm] x^{2}+3 [/mm] = 5y+1
Geben Sie falls vorhanden alle ganzzahligen Lösungen an. Falls nicht, beweisen sie das!

2.  [mm] n^{3}-4n [/mm]

Ist dieser Term durch 3 teilbar ?


Bei der 1. Aufgabe habe ich generell keinen Ansatz? Wie könnte ich am besten anfangen?

Bei der 2. habe ich [mm] \bruch{n^{3}-4n}{3}=x x\in\IN [/mm]

Ich könnte das nun auf die Form [mm] n^{3}= [/mm] 3x+4n bringen ?

Aber weiter weis ich auch nicht,wie ich das beweisen muss ?

PS: Wir dürfen keine Induktion anwenden!

        
Bezug
Arithmetik: zur ersten Aufgabe
Status: (Antwort) fertig Status 
Datum: 00:34 So 13.05.2012
Autor: nobsy

Man vereinfacht zunächst die Gleichung zu
[mm] x^2+2=5y [/mm]
Dies ist so zu lesen, dass im Falle der Lösbarkeit durch ganze Zahlen die linke Seite durch 5 teilbar wäre.
Das Quadrat einer natürlichen Zahl hat aber als Einerstelle nur folgende Werte: 1,4,9,6,5,0, niemals jedoch 3 oder 8, was Voraussetzung dafür wäre, dass die um 2 vergrößerte Quadratzahl, also [mm] x^2+2 [/mm] durch 5 teilbar ist.
Anmerkung: Eine ganze Zahl ist genau dann durch 5 teilbar, wenn sie auf 0 oder 5 endet.
Damit ist klar, dass diese Gleichung keine ganzzahligen Lösungen hat.

Bezug
                
Bezug
Arithmetik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:48 So 13.05.2012
Autor: db60


> Man vereinfacht zunächst die Gleichung zu
>  [mm]x^2+2=5y[/mm]
>  Dies ist so zu lesen, dass im Falle der Lösbarkeit durch
> ganze Zahlen die linke Seite durch 5 teilbar wäre.
> Das Quadrat einer natürlichen Zahl hat aber als
> Einerstelle nur folgende Werte: 1,4,9,6,5,0, niemals jedoch
> 3 oder 8, was Voraussetzung dafür wäre, dass die um 2
> vergrößerte Quadratzahl, also [mm]x^2+2[/mm] durch 5 teilbar ist.
>  Anmerkung: Eine ganze Zahl ist genau dann durch 5 teilbar,
> wenn sie auf 0 oder 5 endet.
>  Damit ist klar, dass diese Gleichung keine ganzzahligen
> Lösungen hat.

Ok könnte ich auch noch einen Tipp für die 2. bekommen ? Die 1. Habe ich jetzt verstanden vielen Dank :)

Bezug
                        
Bezug
Arithmetik: Antwort
Status: (Antwort) fertig Status 
Datum: 00:59 So 13.05.2012
Autor: barsch

Hallo,

siehe Antwort von nobsy. Die Argumentation hatte ich auch anzubieten.

[mm]n^3-4n=n^3-n-3n[/mm]

3n ist durch 3 teilbar.

[mm]n^3-n=n(n^2-1)=n*(n-1)*(n+1)=(n-1)*n*(n+1)[/mm] - nun ist von je drei aufeinanderfolgenden natürlichen Zahlen genau eine durch 3 teilbar. Also ist [mm](n-1)*n*(n+1)[/mm] durch 3 teilbar. Damit auch [mm](n-1)*n*(n+1)-3n[/mm].

Gruß
barsch


Bezug
        
Bezug
Arithmetik: zur Frage 2
Status: (Antwort) fertig Status 
Datum: 00:52 So 13.05.2012
Autor: nobsy

Das ist ganz einfach: es ist stets durch 3 teilbar!
Man formt den Term um: [mm] n^3-4n=n*(n^2-4)=n*(n-2)*(n+2). [/mm]
Einer der drei rechts stehenden Faktoren ist stets durch drei teilbar. Man mache sich dies an der Zahlengeraden klar.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]